• Title/Summary/Keyword: 수문지형학

Search Result 29, Processing Time 0.022 seconds

A Comparative Analysis on Channel Forms and Landscapes at Naeseongcheon River and Wicheon River in Gyeongpook Province (경북 내성천과 위천의 하도 형상 및 경관 비교 분석)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.4
    • /
    • pp.1-16
    • /
    • 2010
  • Channel topography, sediment properties, channel landscapes and characteristics of land covers in Naeseongcheon and Wicheon River consisting of granites and sedimentary rocks, respectively, are compared and analyzed. Due to the differences of bedrocks, soils and characteristics of land covers in the basins, Wicheon River with the slow flow speed shows the larger variations in river stage than Naeseongcheon River. While Naeseongcheon River fed by the granite sediments throughout granular disintegration hs tthe regular grain size properties with coarse sand in the most of river, Wicheon River fed by sedimentary rocks indicates the dramatic decertses of grain size lower-ward. Naeseongcheon River with channel interferences such as sand-sized sediment transughoations, dredges, and aggregate collections is analyzed as poorer vegetation covers than Wicheon River due to the dramatic changes in channel surfaces.

The derivation of GIUH by means of the lag time of Nash model (Nash 모형의 지체시간을 이용한 GIUH 유도)

  • Kim, Joo-Cheol;Yoon, Yeo-Jin;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.801-810
    • /
    • 2005
  • The lag time is one of the most important factors for estimating a flood runoff from streams. It is well known to be under the influence of the morphometric properties of basins which could be expressed by catchment shape descriptors. In this paper, the notion of the geometric characteristics of an equivalent ellipse proposed by Moussa(2003) is applied for calculating the lag time of geomorphological instantaneous unit hydrograph(GIUH) at the basin outlet. The lag time is obtained from the observed data of rainfall and runoff by using the method of moments suggested by Nash(1957), and the procedure based on geomorphology is used for GIUH. The relationships between the basin morphometric properties and the hydrological response are discussed as applied to 3 catchments In Korea. Additionally, the shapes of equivalent ellipse are examined how then are transformed from upstream area to downstream one. As a result, the relationship between the hydrological response and descriptors is shown to be comparatively good, and the shape of ellipse is presented to approach a circle along the river downwards. These results may be expanded to the estimation of hydrological response of ungauged catchment.

The physical geography in general:yesterday and tomorrow (자연지리학 일반: 회고와 전망)

  • Son, Ill
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.2
    • /
    • pp.138-159
    • /
    • 1996
  • There has been a tendency for Geomorphology and Climatology to be dominant in Physical Geography for 50 years in Korea. Physical Geography is concerned with the study of the totality of natural environment through the integrated approaches. But, an overall direction or a certain paradigm could not be found, because major sub-divisions of Physical Geography have been studied individually and the subjects and the approaches in studying Physical Geography are enormously diverse. A consensus of opinion could not also exist in deciding what kind of the sub-divisions should be included in the physical geography in general and how those should be summarized. Furthermore it would be considered imprudent to survey the studies of Physical Geography besides those of Geomorphology and Climatology due to the small number of researchers. Assuming that the rest of Physical Geographical studies with the exception of Geomorphological and Climatological studies are the Physical Geography in general, the studies of Physical Geogrpahy in general are summarized and several aspects are drown out as follows. First the descliption of all possible factors of natural environments was the pattern of early studies of Physical Geography and the tendency is maintained in the various kinds of research and project reports. Recently Physical Geographers have published several introductory textbooks or research monographs. In those books, however, the integrated approaches to Physical Geography were not suggested and the relationship between man and nature are dealt with in the elementary level. Second, the authentic soil studies of Physical Geographers are insignificant, because the studies of soil in Physical Geography have been mostly considered as the subsidiary means of Geomorphology Summarizing the studies of Soil Gegraphy by physical geographers and other Pedologists, the subjects are classified as soil-forming processes, soil erosions, soil in the tidal flat and reclaimed land, and soil pollution. Physical Geographers have focused upon the soil-forming processes in order to elucidate the geomorphic processes and the past climatic environment. The results of other subjects are trifling. Thirdy Byogeygrayhers and the results of studies are extremely of small number and the studies of Biogeography in Korea lines in the starting point. But, Biogeography could be a more unifying theme for the Physical-human Geography interface, and it would be expected to play an active part in the field of environmental conservation and resource management. Forth, the studies of Hydrogeography (Geographical Hydrology) in Korea have run through the studies of water balance and the morphometric studies such as the drainage network analysis and the relations of various kinds of morphometric elements in river. Recently, the hydrological model have introduced and developed to predict the flow of sediment, discharge, and ground water. The growth of groundwater studies is worthy of close attention. Finally, the studies on environmental problems was no mole than the general description about environmental destruction, resource development, environmental conservation, etc. until 1970s. The ecological perspectives on the relationship between man and nature were suggested in some studies of natural hazard. The new environmentalism having been introduced since 1980s. Human geographers have lead the studies of Environmental Perception. Environmental Ethics, Environmental Sociology, environmental policy. The Physical geographers have stay out of phase with the climate of the time and concentrate upon the publication of introductory textbooks. Recently, several studies on the human interference and modification of natural environments have been made an attempt in the fields of Geomorphology and climatology. Summarizing the studies of Physical Geography for 50 years in Korea, the integrated approaches inherent in Physical Geography disappeared little by little and the majol sub-divisions of Physical Ceography have develop in connection with the nearby earth sciences such as Geology, Meteorology, Pedology, Biology, Hydrology, etc been rediscovered by non-geographers under the guise of environmental science. It is expected that Physical Geography would revive as the dominant subject to cope with environmental problems, rearming with the innate integrated approaches.

  • PDF

Ecohydraulics - the significance and research trends (생태수리학의 의의와 전망)

  • Woo, Hyoseop
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.833-843
    • /
    • 2020
  • Ecohydraulics is a newly born discipline in the early 1990s by the interdisciplinary approach combined with aquatic ecology in one discipline and geomorphology, hydrology, and fluid hydrodynamics in another. Major areas of ecohydraulics can be delineated as habitat hydraulics (including environmental flow), vegetation hydraulics, eco-corridor hydraulics, eutrophication hydraulics, and ecological restoration hydraulics. Reviews of relevant international journals and literature reveal that ecohydraulics has remained in the limited areas of fish response, hydraulic modeling, and physical habitat response. It has not reached a truly interdisciplinary stage. Literature reviews in Korea reveal that only 3% of the total number of the papers listed in the Journal of KWRA during the last 24 years is related to ecohydraulics. It is about 20% of the total listed in the Journal of Ecology and Resilient Infrastructure. Most of those related to ecohydraulics in Korea concern vegetation hydraulics, habitat hydraulics, and ecological restoration hydraulics. In contrast, dynamic flow modeling areas, including turbulence, fauna motion simulation, and eutrophication hydraulics, are not found. Areas of further research in ecohydraulics in Korea may be specified as follows: 1) environmental flows adapted to the traits of the rivers in Korea, 2) development of the dynamic floodplain vegetation models (DFVM) to assess the changes from the white river to green river, 3) development of the eutrophication hydraulic model to predict the freshwater algal blooms, and 4) development of the models to evaluate the physical, chemical, and biological impacts of the stream restoration, decommissioning and removal of old weirs or small dams.

Environmental Change of Suspended Sediment Discharge by Human Action (인간활동으로 인한 부유토양유출의 환경변화)

  • 박종관
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.153-160
    • /
    • 1993
  • The problem of supply and transport of sediment from a mountainous catchment is very important in explaining dynamic geomorphology and the hydrological cycle. The discharge of suspended sediment is determined by a morphological system. Human interference to environment Is also an important, not negligible factor in sediment production. Moreover, growing concern in recent years for the problems of nonpoint pollution and for the transport of contaminants through terrestrial and aquatic ecosystems has highlighted the role of sediment-associated transport in fluvial systems. This study was conducted in forested and quarried catchments in order to clarify the different discharge process and the mechanism of suspended sediment dynamics for each catchment. As a forested catchment, the Yamaguchi River catchment which drains a $3.12km^2$ area was chosen. On the other hand, the Futagami River basin which is formed by three subbasins (1.07, 1.59 and $1.78km^2$), as a quarried catchment was selected. These catchments are situated to the north and east of Mt. Tsukuba, Ibaraki, Japan. The discharge pattern of suspended sediment from the Futagami River basin is more unstable and irregular than that from forested catchment, the Yamaguchi River catchment. Under the similar rainstorm conditions, suspended sediment concentration from quarried catchment during a rainstorm event increases from 43 to 27,340 mg/l. However, in the case of the forested catchment it changes only from nearly zero to 274 mg/l. Generally, the supply source of suspended sediment is classified into two areas, the in-channel and non-channel source areas. As a result of field measurements, in the case of the forested catchment the in-channel (channel bed, channel bank and channel margin) is the main source area of suspended sediment. On the other hand, remarkable sediment source area on the Quarried catchment is the non-channel that is unvegetated ground.

  • PDF

Restoration of the Stream Runoff by the Physical Deterministic Modeling and Formulation of Water Balance for the Catchment of Byungchun River in Chungcheong Province in Korea (물리 결정 모델링에 의한 충청도 병천천 유역의 하천 유출량 복원과 물 수지 수립)

  • KIM, Man-Kyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.15 no.2
    • /
    • pp.37-53
    • /
    • 2008
  • This study has developed a water balance model for the catchment of Byungchun river using a BROOK90 4.4e physical deterministic water balance model with the long-term meterological data and stream run off data obtained from the basin of Byungchun river in Korea. It is intended that the validation model with calibrated model fitting parameter can build a long-term water balance plan for a period when meterological data are available but stream runoff data are not. Results of this study have satisfied the first expectation as an experiment for water balance modeling since measured stream runoff data have turned out to be very similar to simulated stream runoff data. Through the confirmation of model fitting parameters and validated simulation, water balance for the period of 1998 to 2006 has been restored. Unless the conditions of geomophology, vegetation, soil and land use change, meterological data alone can produce various hydrometeorological data related to stream runoff amount, soil water amount, and evapotranspiration. This study opens up a new horizon in restoring water balance in the past as well planning water balance in the present. The obtained results from this study are expected to be used in predicting future water balance in the wake of the changes in climate and vegetation in Korea.

Development of Trip Programs with Nature Interpretation Using Geomorphic Characteristics of Mt. Halla (한라산의 지형 특성을 활용한 자연해설 탐방 프로그램의 개발)

  • KIM, Taeho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.17-29
    • /
    • 2012
  • In order to improve a trip pattern in Mt. Halla climbing only to a summit, two trip programs with nature interpretation have been developed using the geomorphic characteristics of Mt. Halla which are distinct from those of mountains in the Korean peninsula. It also aims to help conservation of natural environment of Mt. Halla and to enhance the visitor satisfaction in Mt. Halla. The subalpine trip program is carried out on a 1.5 km-long trail between Wissaeoreum Hut and Janggumokoreum. Program participants are able to learn expertise about, and understand vulnerability of, a subalpine ecosystem, Consequently, the program can obtain an educational attainment getting them to recognize the necessity of preserving the subalpine zone of Mt. Halla as an important natural resource. The mountain river trip program is performed on a 1.5 km-long reach of Byeongmun River between Gwaneumsa trailhead and a gorge upstream of Gurin Cave. The program is capable of exhibiting effectively the river characteristics of Jeju Island using the geomorphic and hydrologic properties of Byeongmun River which differ from those of rivers in the Korean peninsula. Since the subalpine grassland and ephemeral stream of Mt. Halla are the visiting places which are rarely experienced in the Korean peninsula, the program participants can understand the regionality of Jeju Island as well as Mt. Halla through trip activities.

Changes in the Riverbed Landforms Due to the Artificial Regulation of Water Level in the Yeongsan River (인위적인 보 수위조절로 인한 영산강 하도 지형 변화)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • A river bed which is submerged in water at high flow and becomes part of the river at low flow, serves as a bridge between the river and the land. The channel bar creates a unique ecosystem with vegetation adapted to the particular environment and the water pool forms a wetland that plays a very important role in the environment. To evaluate anthropogenic impacts on the river bed in the Middle Yeongsangang River, the fluvial landforms in the stream channel were analyzed using multi-temporal remotely-sensed images. In the aerial photograph of 2005 taken before the construction of the large weirs, oxbow lakes, mid-channel bars, point bars, and natural wetlands between the artificial levees were identified. Multiple bars divided the flow of stream water to cause the braided pattern in a particular section. After the construction of the Seungchon weir, aerial photographs of 2013 and 2015 revealed that most of the fluvial landforms disappeared due to the dredging of its riverbed and water level control(maintenance at 7.5El.m). Sentinel-2 images were analyzed to identify differences between before and after the opening of weir gate. Change detection was performed with the near infrared and shortwave infrared spectral bands to effectively distinguish water surfaces from land. As a result, water surface area of the main stream of the Yeongsangang River decreased by 40% from 1.144km2 to 0.692km2. A large mid-channel bar that has been deposited upstream of the weir was exposed during low water levels, which shows the obvious influence of weir on the river bed. Newly formed unvegetated point bars that were deposited on the inside of a meander bend were identified from the remotely sensed images. As the maintenance period of the weir gate opening was extended, various habitats were created by creating pools and riffles around the channel bars. Considering the ecological and hydrological functions of the river bed, it is expected that the increase in bar areas through weir gate opening will reduce the artificial interference effect of the weir.

Discharge Patterns of Yongnup, Daeam-san (대암산 용늪의 유출 패턴에 관한 연구)

  • ZHU, Ju-Hua;PARK, Jongkwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.271-282
    • /
    • 2011
  • The purpose of this study is to clarify the discharge patterns of Yongnup, Daeam-san. Many hydrographs were analyzed by the types of rising and falling stages, and the slope of those stages with the semi-log graph paper was a key point to distinguish the discharge patterns during rainstorms. The correlation between rainfall intensity and slopes of the second or third rising stage was higher than that between slopes of the first rising stage and rainfall intensity. Also, the coefficient of correlation between discharge decrement and the lapsed time from the peak to inflection point of hydrograph, during high water stages, was better than that during low water stages. The annual average discharge rate of Yongnup was 0.54 and the average direct runoff ratio was 0.14. The total discharge amount from Yongnup was about 410,000 tons for a water year, the monthly maximum amount emerged in September and the minimum amount was occurred in March. In summer, 37.7% was a seasonal maximum runoff ratio; on the other hand, 9.4% was a seasonal minimum runoff ratio in winter.