• Title/Summary/Keyword: 수문정보

Search Result 859, Processing Time 0.023 seconds

Land-Cover Change Detection of Western DMZ and Vicinity using Spectral Mixture Analysis of Landsat Imagery (선형분광혼합화소분석을 이용한 서부지역 DMZ의 토지피복 변화 탐지)

  • Kim, Sang-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.158-167
    • /
    • 2006
  • The object of this study is to detect of land-cover change in western DMZ and vicinity. This was performed as a basic study to construct a decision support system for the conservation or a sustainable development of the DMZ and Vicinity near future. DMZ is an is 4km wide and 250km long and it's one of the most highly fortified boundaries in the world and also a unique thin green line. Environmentalists want to declare the DMZ as a natural reserve and a biodiversity zone, but nowadays through the strengthening of the inter-Korean economic cooperation, some developers are trying to construct a new-town or an industrial complex inside of the DMZ. This study investigates the current environmental conditions, especially deforestation of the western DMZ adopting remote sensing and GIS techniques. The Land-covers were identified through the linear spectvral mixture analysis(LSMA) which was used to handle the spectral mixture problem of low spatial resolution imagery of Landsat TM and ETM+ imagery. To analyze quantitative and spatial change of vegetation-cover in western DMZ, GIS overlay method was used. In LSMA, to develop high-quality fraction images, three endmembers of green vegetation(GV), soil, water were driven from pure features in the imagery. Through 15 years, from 1987 to 2002, forest of western DMZ and vicinity was devastated and changed to urban, farmland or barren land. Northern part of western DMZ and vicinity was more deforested than that of southern part. ($52.37km^2$ of North Korean forest and $39.04km^2$ of South Korean were change to other land-covers.) In case of North Korean part, forest changed to barren land and farmland and in South Korean part, forest changed to farmland and urban area. Especially, In North Korean part of DMZ and vicinity, $56.15km^2$ of farmland changed to barren land through 15 years, which showed the failure of the 'Darakbat' (terrace filed) project which is one of food increase projects in North Korea.

  • PDF

The Characteristics of Natural Hazard due to the Impact of Urbanization in Seoul Metropolitan Area : A potential flood hazard study of Anyang-Cheon Watershed (수도권지역 개발에 따른 자연재해 특징분석 : 안양천 유역분지에서 잠재적 수해특성 분석)

  • 성효현
    • Spatial Information Research
    • /
    • v.4 no.1
    • /
    • pp.21-42
    • /
    • 1996
  • The Anyang-cheon is one of the Han River tributaries in Seoul Metropolitan area. It is 35.1km long, has a basin area of 287km2 and touches seven cities of Kyounggi Province and part of Seoul. The purpose of this study were 1) to reconstruct the ancient stream network and to investigate the change of landuse in Anyang-cheon watershed between 1957 and 1991,2) to measure the change of the hydrologic ¬acteristics with urbanization, 3) to suggest the institutional solutions to reduce natural hazard as the area has urbanizedThe main results are as follows: 1.Anyang-cheon river basin has experienced the rapid urbanization and industrialization since 1957. Anyang-cheon stream network was oversimplified in the watershed. The total stream length decreased atributaries in the upper part of river basin have eliminated or buried undergrolmd in pipes. 2.Urbanization impacted to all of the area of Anyang-cht'On watershed. Urbanization in Anyang-cheon watershed corresponds to the large portion of flat area, especially flood - prone zone of river side, and the small portion of Greenbelt to constrain urban expantion in cities. 3.The urbanization of Anyang-cheon watershed produces fundamental changes in watershed hydrology. As infiltration is reduced by the creation of extensive pavement, concrete surface, and sewer pipe, runoff moves more quickly from upland to stream. As a result, runoff from the watershed is flashier, increasing flood hazardAs urban area continue to grow we will need to better utilize stream by protecting and enhancing stream systems.otecting and enhancing stream systems.tems.

  • PDF

A Study on Shaker's Free Design from Fashion (유행(流行)으로부터 자유로운 세이커(Shaker) 디자인에 대한 고찰)

  • Choi, Sung-Woon;Huh, Jin
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.279-288
    • /
    • 2007
  • Today, design is not free from fashion, which emerges and vanishes temporarily, and aims at equalization. As a result, products quickly become obsolete because of fashion. This means that the span of products is determined by a social concept, which is not clarified, regardless of their functions. Usable products will gradually disappear from us and it will cause serious environmental problems, unless we can find out measures against fashion. As such, it is important to study the characteristics of the shaker's design in this circumstance. The Shaker's community has a distinguishable difference from other general societies. Temporary fashion and misled information cannot interfere with their consciousness. Religion, the life and the principle of design have developed on the same level in their community. Especially, any decoration or the difference of materials is not allowed in shaker's design. It reflects their thinking that all people are equal in the sight of God. Therefore, any decoration for social and economical superiority can not be used. Through this consciousness, they can be free from fashion or decoration. They, also, believe that they can reach perfection through practicality and simplicity. The reason why shaker's design is not disturbed by fashion is that their belief is involved in their design. Consequently, if religious or conscious contents are primarily set up, design can be free from fashion and products can be used for a long time.

  • PDF

A Study on Design Education Re-engineering by Multi-disciplinary Approach (다학제적 접근을 통한 대학디자인 교육혁신 프로그램 연구)

  • Lee, Soon-Jong;Kim, Jong-Won;Chu, Wu-Jin;Chae, Sung-Zin;Yoon, Su-Hyun
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.299-314
    • /
    • 2007
  • For the past 20 years, the growth and development of university-design-educational institutes contributed to the industrial development of our country. Due to the technological fluctuation and changes in the industrial structure in the latter half of the 20th century, the enterprise is demanding professionally-oriented design manpower. The principle which appears from instances of the advanced nations is to accommodate the demands in social changes and apply them to educational design programs. In order to respond promptly to the industrial demand especially, the advanced nations adopted "multidisciplinary design education programs" to lead innovation in the area of design globally. The objective of the research consequently is to suggest an educational system and a program through which the designer can be educated to obtain complex knowledge and the technique demanded by the industry and enterprise. Nowadays in order to adapt to a new business environment, designers specially should have both the knowledge and techniques in engineering and business administration. We suggest that the IPDI, a multidisciplinary design educational system and program is made up of the coordinated operation of major classes, on-the-job training connection, educational system for research base creation, renovation design development program for the application and the synthesis of alternative proposals about the training facility joint ownership by connecting with the education of design, business administration and engineering.

  • PDF

Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics (MODIS 지표면 온도 자료와 지구통계기법을 이용한 지상 기온 추정)

  • Shin, HyuSeok;Chang, Eunmi;Hong, Sungwook
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2014
  • Near surface air temperature data which are one of the essential factors in hydrology, meteorology and climatology, have drawn a substantial amount of attention from various academic domains and societies. Meteorological observations, however, have high spatio-temporal constraints with the limits in the number and distribution over the earth surface. To overcome such limits, many studies have sought to estimate the near surface air temperature from satellite image data at a regional or continental scale with simple regression methods. Alternatively, we applied various Kriging methods such as ordinary Kriging, universal Kriging, Cokriging, Regression Kriging in search of an optimal estimation method based on near surface air temperature data observed from automatic weather stations (AWS) in South Korea throughout 2010 (365 days) and MODIS land surface temperature (LST) data (MOD11A1, 365 images). Due to high spatial heterogeneity, auxiliary data have been also analyzed such as land cover, DEM (digital elevation model) to consider factors that can affect near surface air temperature. Prior to the main estimation, we calculated root mean square error (RMSE) of temperature differences from the 365-days LST and AWS data by season and landcover. The results show that the coefficient of variation (CV) of RMSE by season is 0.86, but the equivalent value of CV by landcover is 0.00746. Seasonal differences between LST and AWS data were greater than that those by landcover. Seasonal RMSE was the lowest in winter (3.72). The results from a linear regression analysis for examining the relationship among AWS, LST, and auxiliary data show that the coefficient of determination was the highest in winter (0.818) but the lowest in summer (0.078), thereby indicating a significant level of seasonal variation. Based on these results, we utilized a variety of Kriging techniques to estimate the surface temperature. The results of cross-validation in each Kriging model show that the measure of model accuracy was 1.71, 1.71, 1.848, and 1.630 for universal Kriging, ordinary Kriging, cokriging, and regression Kriging, respectively. The estimates from regression Kriging thus proved to be the most accurate among the Kriging methods compared.

Complex Terrain and Ecological Heterogeneity (TERRECO): Evaluating Ecosystem Services in Production Versus water Quantity/quality in Mountainous Landscapes (산지복잡지형과 생태적 비균질성: 산지경관의 생산성과 수자원/수질에 관한 생태계 서비스 평가)

  • Kang, Sin-Kyu;Tenhunen, John
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.307-316
    • /
    • 2010
  • Complex terrain refers to irregular surface properties of the earth that influence gradients in climate, lateral transfer of materials, landscape distribution in soils properties, habitat selection of organisms, and via human preferences, the patterning in development of land use. Complex terrain of mountainous areas represents ca. 20% of the Earth's terrestrial surface; and such regions provide fresh water to at least half of humankind. Most major river systems originate in such terrain, and their resources are often associated with socio-economic competition and political disputes. The goals of the TERRECO-IRTG focus on building a bridge between ecosystem understanding in complex terrain and spatial assessments of ecosystem performance with respect to derived ecosystem services. More specifically, a coordinated assessment framework will be developed from landscape to regional scale applications to quantify trade-offs and will be applied to determine how shifts in climate and land use in complex terrain influence naturally derived ecosystem services. Within the scope of TERRECO, the abiotic and biotic studies of water yield and quality, production and biodiversity, soil processing of materials and trace gas emissions in complex terrain are merged. There is a need to quantitatively understand 1) the ecosystem services derived in regions of complex terrain, 2) the process regulation occurred to maintain those services, and 3) the sensitivities defining thresholds critical in stability of these systems. The TERRECO-IRTG is dedicated to joint study of ecosystems in complex terrain from landscape to regional scales. Our objectives are to reveal the spatial patterns in driving variables of essential ecosystem processes involved in ecosystem services of complex terrain region and hence, to evaluate the resulting ecosystem services, and further to provide new tools for understanding and managing such areas.

Interannual and Seasonal Variations of Water Quality in Terms of Size Dimension on Multi-Purpose Korean Dam Reservoirs Along with the Characteristics of Longitudinal Gradients (우리나라 다목적댐 인공호들의 규모에 따른 연별.계절별 수질변이 및 상.하류간 종적구배 특성)

  • Han, Jeong-Ho;Lee, Ji-Yeoun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.319-337
    • /
    • 2010
  • Major objective of this study was to determine interannual and seasonal water quality along with characteristics of longitudinal gradients along the reservoir axis of the riverine zone (Rz)-to-lacustrine zone (Lz). Water quality dataset of five years during 2003~2007 used here were obtained from Ministry of Environment, Korea and ten physical, chemical and biological parameters were analyzed in the study. Similarity analysis, based on moropho-hydrological variables of reservoir surface area, watershed area, total inflow, and outflow, showed that the reservoirs were categorized as three groups of large-dam reservoirs (Chungju Reservoir, Daecheong Reservoir and Soyang Reservoir), mid-size reservoirs (Andong Reservoir, Yongdam Reservoir, Juam Reservoir and Hapcheon Reservoir), and small-size reservoirs (Hoengseong Reservoir and Buan Reservoir). According to the data comparison of high-flow year (2003) vs. lowflow year (2005), dissolved oxygen (DO), pH, biological oxygen demand (BOD), suspended solids (SS), total nitrogen (TN), total phosphorus (TP), chlorophyll-a (CHL) and electrical conductivity (EC) declined along the longitudinal axis of Rz to Lz and water transparency, based on Secchi depth (SD), increased along the axis. These results indicate that transparency was a function of Values of pH, DO, SS, SD, and EC at each site were greater in the low-flow year (2005) than the high-flow year (2003), whereas values of BOD, COD, TN, TP and CHL were greater in the high-flow year (2003). When values of TN, TP, CHL and SD in nine reservoirs were compared in the three zones of Rz, Tz, and Lz, values of TN, TP and CHL declined along longitudinal gradients and SD showed the opposite due to the sedimentation processes from the water column. Values of TN were not statistically correlated with TP values. The empirical linear models of TP-CHL and CHL-SD showed significant (p<0.05, $R^2$>0.04). In the mid-size reservoirs, the variation of CHL was explained ($R^2$=0.2401, p<0.0001, n=239) by the variation of TP. The affinities in the correlation analysis of mid-size reservoirs were greater in the CHL-SD model than any other empirical models, and the CHL-SD model had an inverse relations. In the meantime, water quality variations was evidently greater in Daecheong Reservoir than two reservoirs of Andong Reservoir and Hoengseong Reservoir as a result of large differences of water quality by long distance among Rz, Tz and Lz.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

Monthly temperature forecasting using large-scale climate teleconnections and multiple regression models (대규모 기후 원격상관성 및 다중회귀모형을 이용한 월 평균기온 예측)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Nam Won;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.731-745
    • /
    • 2021
  • In this study, the monthly temperature of the Han River basin was predicted by statistical multiple regression models that use global climate indices and weather data of the target region as predictors. The optimal predictors were selected through teleconnection analysis between the monthly temperature and the preceding patterns of each climate index, and forecast models capable of predicting up to 12 months in advance were constructed by combining the selected predictors and cross-validating the past period. Fore each target month, 1000 optimized models were derived and forecast ranges were presented. As a result of analyzing the predictability of monthly temperature from January 1992 to December 2020, PBIAS was -1.4 to -0.7%, RSR was 0.15 to 0.16, NSE was 0.98, and r was 0.99, indicating a high goodness-of-fit. The probability of each monthly observation being included in the forecast range was about 64.4% on average, and by month, the predictability was relatively high in September, December, February, and January, and low in April, August, and March. The predicted range and median were in good agreement with the observations, except for some periods when temperature was dramatically lower or higher than in normal years. The quantitative temperature forecast information derived from this study will be useful not only for forecasting changes in temperature in the future period (1 to 12 months in advance), but also in predicting changes in the hydro-ecological environment, including evapotranspiration highly correlated with temperature.