• Title/Summary/Keyword: 수문순환

Search Result 522, Processing Time 0.018 seconds

Experimental Comparison and Analysis of Measurement Results Using Various Flow Meters (유량측정 기기별 측정성과에 대한 실험적 비교분석)

  • Lee, Jae-Hyug;Lee, Suk-Ho;Jung, Sung-Won;Kim, Tae-Woong
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.95-103
    • /
    • 2010
  • Discharge data examine the process of hydrologic cycle and used significantly in water resource planning and irrigation and flood control planning. However, it needs lots of time and money to get the discharge data. So discharge rating curve is usually used in converting discharge data. Therefore reliability of discharge rating curve absolutely depends on quality of discharge data. Many engineers who study hydrologic engineering make high quality discharge data to develop reliable discharge rating curve. And they carry out research on standard and method of discharge measurement, and equipment improvement. Now various flow meters are utilized to make discharge data in Korea. However, accuracy of equipment and experimental research data from measurement are not enough. In this paper, constant discharge flowed through standard concrete channel, and the velocity is measured using various flow meters. Also Discharge is calculated by measured data to compare and analyze. The equipment for the experiment is Price AA(USGS Type AA Current meter), flow meter, ADC, C2 small current meter, flow tracker, Electromagnetic current meter. The discharge got form various flow meters which are widely used for discharge measurement. The various depths of water were examined and compared such as 0.30 m, 0.35 m, 0.40 m, 0.45 m, 0.50 m, 0.55 m. The experiment progresses a round-measurement on 6-case. Wading measurement(one point method : the 60 % height in surface of the water) was applied to improve creditability and accuracy among measurement methods. USGS Type AA current Meter, Flow Meter, ADC, C2 Small Current meter got the certificate of quality guaranteed. So the results of experiment were used to compare discharge. The Results showed the difference based on USGS Type AA current Meter at average discharge and velocity. Electromagnetic current meter made differences over $\pm$ 10 % and Flow Meter made differences under $\pm$ 10 %. Also ADC, Flow Meter, C2 Small Current meter made differences under $\pm$ 5 %.

Analysis of the Impact of Satellite Remote Sensing Information on the Prediction Performance of Ungauged Basin Stream Flow Using Data-driven Models (인공위성 원격 탐사 정보가 자료 기반 모형의 미계측 유역 하천유출 예측성능에 미치는 영향 분석)

  • Seo, Jiyu;Jung, Haeun;Won, Jeongeun;Choi, Sijung;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.147-159
    • /
    • 2024
  • Lack of streamflow observations makes model calibration difficult and limits model performance improvement. Satellite-based remote sensing products offer a new alternative as they can be actively utilized to obtain hydrological data. Recently, several studies have shown that artificial intelligence-based solutions are more appropriate than traditional conceptual and physical models. In this study, a data-driven approach combining various recurrent neural networks and decision tree-based algorithms is proposed, and the utilization of satellite remote sensing information for AI training is investigated. The satellite imagery used in this study is from MODIS and SMAP. The proposed approach is validated using publicly available data from 25 watersheds. Inspired by the traditional regionalization approach, a strategy is adopted to learn one data-driven model by integrating data from all basins, and the potential of the proposed approach is evaluated by using a leave-one-out cross-validation regionalization setting to predict streamflow from different basins with one model. The GRU + Light GBM model was found to be a suitable model combination for target basins and showed good streamflow prediction performance in ungauged basins (The average model efficiency coefficient for predicting daily streamflow in 25 ungauged basins is 0.7187) except for the period when streamflow is very small. The influence of satellite remote sensing information was found to be up to 10%, with the additional application of satellite information having a greater impact on streamflow prediction during low or dry seasons than during wet or normal seasons.