• Title/Summary/Keyword: 수목생장량

Search Result 77, Processing Time 0.024 seconds

Management Period Setting Study of through Analysis of the Growth Amount after Planting of Deciduous Broadleaf Species Planted in Ecological Restoration Sites (생태복원지에 식재된 낙엽활엽수종의 이식 후 생장량 분석을 통한 관리기간 설정 연구)

  • Lee, Soo-Dong;Bae, Soon-Hyoung
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.496-506
    • /
    • 2022
  • The growth of trees planted through transplantation rapidly decreases immediately after planting due to extreme disturbances such as root cutting and crown damage. Although the growth rate is recovered as time elapses, the time required to restore the original growth varies by species. Therefore, it is necessary to set an appropriate tree management period for survival after transplantation by analyzing each species' annual growth change. In this study, we analyzed the growth amount of deciduous broad-leaf species planted in the area where the riparian ecological belt was formed and proposed the management period based on the results. Slowed growth immediately after planting is a common phenomenon due to root cutting and pruning, the pre-works performed to increase tree survival rate during the transplantation process. Afterward, the original growth rate is recovered as time passes, but the time required may vary depending on the species and planting environment. Most of the trees showed a rapid decrease in growth immediately after transplantation. After that, although it is different for each species, most of them showed a gradual recovery from 2 years onwards. The analysis of the growth rate by tree species confirmed that it took 2 to 4 years, depending on the tree species, to recover the growth level before transplantation after a rapid decrease in growth immediately after transplantation. The results suggest that improving the defect rate of planted trees is necessary to meet the project objectives: ecological restoration and pollutant reduction. It requires setting a tree management period of at least two years and creating an appropriate base environment.

Indicatrors of Carbon Storage and Uptake by Tree Growth in Natural Ecosystem (자연생태계 수목의 생장에 따른 탄소저장 및 흡수량 지표)

  • 조현길;안태원
    • Korean Journal of Environment and Ecology
    • /
    • v.14 no.3
    • /
    • pp.175-182
    • /
    • 2000
  • 본 연구는 자연생태계 소목의 생장에 따른 탄소저장 및 흡수량 지표를 도출하고 용인시를 대상으로 임상유형의 영급별 탄소저장 및 흡수를 계량하였다. 침엽수 1주당 탄소저장 및 흡수량은 중부와 남부의 생장지역간 유의한 차이가 없었으나(p>0.05). 활엽수의경우는 남부지역에서 중부지역보다 더욱 많았다. 수목 1주당 탄소저장 및 흡수량은 활엽수가 동일 직경의 침엽수보다 더욱 많았으며, 그 차이는 직경생장과 더불어 증가하는 경향을 보였다. 용인시 자연생태계의 단위면적당 평균 탄소저장 및 흡수량은 역시 영급이 높을수록 많았으며, II 영급을 제외한 동일 영급내에서는 침엽수림보다는 혼효림이, 혼효림보다는 활엽수림이 더욱 많았다. 중부지역에서 생장하는 흉고직경 20cm 의 활엽수 1주는 약 175리터의 휘발유 소비로 인하여 배출되는 탄소량을 저장하고, 1ha의 IV 영급 활엽수림은 시민 57명이 화석연료 소비로 연간 배출하는 탄소량을 저장하였다. 본 연구의 탄소저장 및 흡수 지표는 직경 생장에 따른 삼림수목의 대기탄소농도 저감 가치를 용이하게 추정하는데 활용될 수 있다.

  • PDF

Long-Term Monitoring of Climatic and Soil Factors, and Tree Growths in Worak Mountain Using Phytogram System (파이토그램을 이용한 월악산 기후요소, 토양환경 및 수목생장 장기간 모니터링)

  • 박원규;서정욱
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.2
    • /
    • pp.101-107
    • /
    • 2000
  • Using the phytogram system, this study monitored hourly environmental factors(climate and soil), and radial growths and cambium activities of conifers in Worak mountain for 28 months from May 1996 to October 1998 to examine the influences of climatic factors on tree growths/carnbium activities of conifers in Worak Mountain, Korea. The phytogram system first puts a fine electrode into cambial zone. This device can automatically record environmental factors and cambium electrochemistry(hydration and proton levels). Dendrometers are attached to the phytogram for monitoring seasonal dynamics of cambial growth. We compared the results of radial growth by species and by diameter class. The growth decreased in order of Larix leptolepis, Pinus densiflora and Pinus rigida. Pre-monsoon growths were fast and May-June moisture regime was the most critical for all species. In the middle of September, radial growths were finished. The proton level and stem diameter reached the minimum at 4 p.m. On the other hand, the hydration level reached the maximum at 4 p.m. This diurnal change resulted from transpiration and the release of water from phloem storage to sapwood through xylem stream.

  • PDF

Quantitative Analysis of Effects on Tree Growth of the Changes in Meteorological Environment around Imha Dam (임하댐 주변지역(周邊地域)의 기상환경(氣象環境) 변화(變化)가 수목생장(樹木生長)에 미치는 영향(影響)에 관한 정량적(定量的) 분석(分析))

  • Shin, Man Yong;Chun, Jung Wha
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.3
    • /
    • pp.462-471
    • /
    • 1996
  • This study was conducted to investigate the effects of meteorological changes on tree growth due to the reservoir construction. First, climatic normals were estimated before and after the reservoir construction at the area of Imha, through the topoclimatological relationships. Secondly, the amount of meteorological changes was quantified based on the difference analysis of the climatic normals. Thirdly, the diameter increments of Pinus densiflora around Imha area were measured with increment borer. Sample trees were taken on the 6 points of 30m, 100m, 500m, 1km, 3km, and 5km from the reservoir, respectively. Finally, effects of meteorological changes on tree growth were investigated based on the analysis of tree ring increment patterns. Results showed that the growth of trees within the range of 1km from the reservoir had been increased, but the growth of ones out of 1km range had no relationship with meteorological changes after the reservoir construction. It seems that the diameter increment of trees grown near reservoir has been increased mainly due to the increased solar radiation in spring and the increased total amount of precipitation during growing season, compared with those before the reservoir construction. It is supposed, however, that the changes of monthly mean temperature has little effect on the tree growth because of its small amount of changes.

  • PDF

Setting of Intensive Management Timing for Planting Trees in the Riverine Zone Based on Growth Analysis - Focusing on Planting of Pinus densiflora in the Nakdong River's Riverine Ecobelt - (생장량 분석을 기반으로 한 수변지역 식재수목의 집중관리시기 설정 연구 - 낙동강 수변생태벨트의 식재 소나무를 중심으로 -)

  • Lee, Soo-Dong;Kang, Hyun-Kyung;Song, Kwang-Seop
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.2
    • /
    • pp.126-134
    • /
    • 2021
  • It is necessary to set a management period by analyzing growth trends for individual species because the time taken for planted trees to become established differs by species. The purpose of this study was to suggest an appropriate management period through the analysis of the annual growth of Pinus densiflora planted in the riverine eco belt. The average annual growth before planting was 0.6cm. The growth after planting showed an increase of 0.3cm in the 1st and 2nd year, 0.5cm in the 3rd and 4th year, and 0.7cm after the 5th year. Since P. densiflora was confirmed to go through poor growth stages in the 1st and 2nd year, a recovery stage in the 3rd and 4th year, and a normal growth stage in the 5th year, management should pay more attention to improve inappropriate environmental conditions until at least the 4th year, unlike the growth of hardwood. Since the period required for activation by species may vary, the management period of each species will need to be set through growth research.

Carbon Storage and Uptake by Evergreen Trees for Urban Landscape - For Pinus densiflora and Pinus koraiensis - (도시 상록 조경수의 탄소저장 및 흡수 - 소나무와 잣나무를 대상으로 -)

  • Jo, Hyun-Kil;Kim, Jin-Young;Park, Hye-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.571-578
    • /
    • 2013
  • This study generated regression models through a direct harvesting method to estimate carbon storage and uptake by Pinus densiflora and Pinus koraiensis, the major evergreen tree species in urban landscape, and established essential information to quantify carbon reduction by urban trees. Open-grown landscape tree individuals for each species were sampled reflecting various diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute the total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing radial growth rates of stem samples at breast height. The study then derived a regression model easily applicable in estimating carbon storage and uptake per tree for the two species by using diameter at breast height (DBH) as an independent variable. All the regression models showed high fitness with $r^2$ values of higher than 0.98. While carbon storage and uptake by young trees tended to be greater for P. densiflora than for P. koraiensis in the same diameter sizes, those by mature trees with DBH sizes of larger than 20 cm showed results to the contrary due to a difference in growth rates. A tree of P. densiflora and P. koraiensis with DBH of 25 cm stored 115.6 kg and 130.0 kg of carbon, respectively, and annually sequestered 9.4 kg and 14.6 kg. The study has broken new grounds to overcome limitations of the past studies which quantified carbon reduction of the study species by substituting, due to a difficulty in direct cutting and root digging of landscape trees, coefficients from forest trees such as biomass expansion factors, ratios of below ground/above ground biomass, and diameter growth rates.

Analysis on the Community Structure of Quercus mongolica Fisch. ex Ledeb. in the Baekdudaegan Mountains by Elevation - Between Hyangnobong and Gitdaebaggybong - (해발고도에 따른 백두대간 신갈나무군락 특성 연구 - 향로봉에서 깃대배기봉 구간을 대상으로 -)

  • Jeong, Bo-Kwang;Oh, Choong-Hyeon
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • This study is contributed to examine the vegetation characteristics of the Quercus mongolica which are located in between two summits, hyangnobong and gitdaebaggybong, with dividing two regions(I, II). A total of 63 Quercus mongolica communities were enrolled in this survey. A~E, 5 communities were the result of analysed classification by TWINSPAN. Spatial distribution of the communities; 'A' community is concentrated at an altitude of about 1,300 meters in Mt. Taebaek(II region). 'B' and 'C' communities are concentrated at an altitude of between 700 and 1500 meters in Mt. Seorak and Odae(Iregion). 'D' and 'E' communities are concentrated at an altitude of below 1,100 meters in Mt. Cheongok and geumdaebong(II region), and also Mt. Seorak and Odae(Iregion). Arboral and shrub populations, maximum species diversity and height of arboral of each communities have a characteristic of decreasing according to increasing altitude gradually. And the result of studying on arboreal growth increment with up to 40-year-old trees, there is no special tendency with growth increment in the altitude of subnormal 1,100 meters, but there is a tendency that growth increment becomes lower in the altitude of more than 1,100 meters. In correlation analysis, it is -0.53 in the Quercus mongolica and Betula costata community at an altitude of over 1,000 meters, the correlation shows negative(-). It is +0.59 in the Quercus mongolica and Rubus crataegifolius community at an altitude of less than 1,000 meters, the correlation shows positive(+). And those are cognate trees with the correlation of Betula costata, Betula costata Trautv., Tripterygium regelii Sprague&Takeda., Acer barbinerve Maxim. With a summary of the results, the changes in the environment according to the elevation affect Quercus mongolica community.

A Study on Development of Eco-revegetation Measures Using Remnant Root-stock of Native Trees(III) (자생수목그루터기를 재활용한 에코녹화공법 개발연구(III))

  • 오구균;안영희;일본명;나경태
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.1
    • /
    • pp.7-17
    • /
    • 2004
  • The objective of this study was to find eco-revegetation measures recycling remnant root-stock of native species which comes to be disused. The monitoring plot was established in Nov.2001 at Honam University's affliated farm that is located in Wolya-Myeon, Hampyeong-Gun, Jeollanam-Do. The plots were monitored 2 times each in Oct.2002 and Sep.2003. Sprout and survival rate of the root-stock including the effect of trunk length, antiseptic treatment, planting season and number of planted were surveyed. The results of the study were as follows Ten tree species including Zelkova serrata among twenty tree species showed outstanding sprout and survival rate (over 90 percent). The growth rate was better in the longer trunk length root-stocks (35cm) than shorter ones (10cm). There was a difference in the size of the root ball when digging the root-stocks. It showed better condition when the root ball sizes were 3 times wide and 5 times deep of the root-stocks or 5 times wide and 5 times deep. Antiseptic treatment on the cuts of the trunk of root-stocks makes a difference in the growth rate. The survival rate of the root-stock showed highest value (100%) when it was transplanted in late autumn (November). And the next best survival rate was reached when it was in early or late spring (March and May)

Estimating Carbon Sequestration by Planting a Leisure-Recreation Place in Gangwon Province, Korea (레저휴양공간의 수목 추가식재가 탄소흡수기능 향상에 미치는 효과)

  • Hong, Suk-Hwan;Sung, Chan-Yong;Yoo, Ki-Joon;Cho, Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.3
    • /
    • pp.446-453
    • /
    • 2012
  • This study estimated how much carbon can be sequestered if we plant trees in non-forested areas in the 36 hole Oak Valley Golf Courses in Gangwon Province, Korea. We identified plantable areas where planting trees will not affect golf game using high resolution aerial photography and ground survey and estimated the annual carbon sequestration rate of the planted trees using biomass equations. Of the golf courses, 30.3% were covered by forest. Other major land cover types include lawn, waterbody, baresoil, buildings, and roads. The plantable areas consist of $106,101m^2$ of lawn (6.0% of the study site) and $177,531m^2$ of low density forest (10.1% of the study site). We assumed to plant Mongolian oaks with 10 cm in diameter at brest height with the density of $0.3/m^2$ in the lawn and $0.2/m^2$ in the low density forest. The planting simulation shows that the total number of the newly planted trees were 67,336, and the total carbon sequestered during the subsequent year was 392.9 tC/yr, which offset 12.5% of the total carbon emitted from the golf courses. The annual carbon sequestration rate gradually increases and reaches its maximum level at 440.5 tC/yr in 15 years since the initial reforestation (14.0% of the carbon emission from the golf courses).

Study on Growth Characteristics of Pinus thunbergii Windbreak Forests around Goosipo Beach, Gochang-Gun (고창 구시포 해안 곰솔림의 생장특성에 관한 연구)

  • Park, Chong-Min;Kim, Seong-Won;Park, Seong-Hak
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • The growth characteristics of Pinus thunbergii windbreak forest around Goosipo Beach, Sangha-Myon, Gochang-Gun, Jeollabuk-Do have been investigated, and the results are summarized as follows. The soil in the site was light acid sand with pH 5.7, and the mean sodium concentration of soils was 1.42dS/m. The tree diameter, height, crown width, and shape ratio(Height/DBH) were better with tree density was coming lower. Especially, the rate of shape ratio under 60 was more in sites with low tree density. This demonstrated that the trees have grown more soundly when the tree density was lower. The direction of main winds and distribution ratio of tree inclination had a correlation. The inclined trees are seemed to be influenced by main winds when they were younger and by Typhoon partly. Eighty one vascular plant species were found in the sites, and more number of herbaceous plants (57 taxa) lived there than woody plants (24 taxa). And more plant species of dune were found at the site where dune have developed well. Some thinning works need at high tree density areas in order to ensure effects of coastal windbreak.