• Title/Summary/Keyword: 수리학적 거동

Search Result 171, Processing Time 0.026 seconds

The evaluation of wetland sustainability for constructing a washland and Its hydrologic effect to Upo wetland (천변저류지 조성에 따른 습지지속가능성 평가 및 우포늪에 미치는 수문학적 영향 평가)

  • Kim, Jae-Chul;Kim, Jin-Kwan;Kim, Sang-Dan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.137-148
    • /
    • 2008
  • There have been many cases of using wetlands as an alternative in controlling stormwater, treating mining leachate, and agricultural discharge, and so on, recently. The reality is, however, that the wetlands are not properly applicable because of the lack of enough longterm data for wetlands due to the difficulty of long-term monitoring. Therefore, this study tries to analyze the storage of Upo, Mokpo, Sajipo, and Jjokjibeul in Topyeong watershed using SWAT(Soil and Water Assessment Tool) model, one of the long-term runoff hydrologic model, for the purpose of generating the long-term data and analyzing the hydrologic behavior of wetlands based on the generated data. Also, the changes in runoff at the outlet are analyzed after applying the simulation of constructing washland in Topyeong watershed and the storage in Upo is analyzed. The result shows that the runoff at the outlet of the watershed is decreased in rainy season from July to August and increased in dry season from December to February. In addition, the analysis of Upo storage concludes that Upo can be influenced by the construction of the washland. The duration curve of washland is then analyzed in order to evaluate the wetland's sustainability in terms of washland and it appears that the runoff of washland is simulated to be less than that of the existing wetland. Moreover, runoffs of some washlands are simulated to be less even in wet season. These results lead to the fact that there should be further hydrologic management for constructed washland. Then, the changes in loads (TN and TP) because of constructing washland are analyzed. The result shows that the loads are reduced because of the construction. Also, the changes in loads due to the construction of buffer strips are analyzed to compare the load reductions caused by a washland. Finally, REMM model, a riparian management model, is applied to overcome the hydrologic ambiguousness of SWAT model, and then, the SWAT model results are compared to those of REMM.

Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments (퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.436-447
    • /
    • 2004
  • Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.

Experimental Analysis of the Morphological Changes of the Vegetated Channels (실내실험에 의한 식생하도의 지형변동 특성 분석)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.909-919
    • /
    • 2013
  • This study examines the hydraulic characteristics, the channel changes, the behavior of bars, and bank stability by means of laboratory experiments. Three sets of laboratory experiments are conducted to elucidate the influence of riparian vegetation of the channels with erodible banks. Flow velocity is decreased in the vegetated zone, the mobility of lower channels is decreased. The double Fourier analysis of the bed waves shows that 1-1 mode (alternate bar) is dominant at the initial stage of the channel development. As time increases, 2-2 and 2-3 modes (central or multiple bars) are dominant due to the increased width to depth ratio. As the vegetation density is increased, the number of bars are increased, bank stability increases. The variation of sediment discharges is affected by vegetation density. The braided intensity is decreased with vegetation density. As the vegetation density is increased, the correlation coefficient of bed topography and bed relief index is increased.

Advection and Diffusion of Pollutant Inflow of Freshwater in Masan Bay (마산만에서의 담수 유입시 오염물의 이송 및 확산)

  • Yoo, Mim-Wook;Kim, Young-Do;Lyu, Si-Wan;Seo, Il-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.795-798
    • /
    • 2008
  • An estuary is very important that the seawater and the freshwater meet and they formed wide foreshore and estuarine which is used as the habitat of various living thing and spawning bed of fish. Masan bay is typical closing bay in Korea. It is located 9 km from the open sea and most inside of Jinhae bay. The width of bay entrance is less than 1 km, where the flow velocity is very low. The large scale industrial complex of Masan bay is located in near Masan and Changwon city whose population is about 100 million. Because of low tidal velocity, the pollutants from the land are accumulated, which makes the water quality worse in Masan bay. The purpose of this study is to analyze the various hydraulic characteristics using RMA-2 model. The advection and diffusion of pollutant is also simulated using RMA-4 model according to the inflow of Changwon-stream and Nam-stream. The hydraulic simulations include the effect of tide which can be characterized by the tide data of Masan bay tide observatory.

  • PDF

Hydrogeochemical Characteristics, Occurrence, and Distribution of Natural Radioactive Materials (Uranium and Radon) in Groundwater of Gyeongnam and Gyeongbuk Provinces (경상남북도 지하수 중 자연방사성물질 우라늄과 라돈의 산출특징과 함량분포에 대한 수리지화학적 연구)

  • Cho, Byong Wook;Choo, Chang Oh;Yun, Uk;Lee, Byeong Dae;Hwang, Jae Hong;Kim, Moon Su
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.551-574
    • /
    • 2014
  • The occurrence, distribution, and hydrogeochemical characteristics of uranium and radon in groundwater within different lithologies in Gyeongnam and Gyeongbuk provinces were investigated. A total of 201 groundwater samples from sedimentary rocks taking a large portion of the geology and from igneous rocks taking a small portion of the geology were analyzed and examined using factor analysis. Their radionuclide levels were used to construct detailed concentration maps. The groundwater types, defined using a Piper diagram, are mainly Ca-$HCO_3$ with less Na-$HCO_3$. Among the samples, one site exceeds $30{\mu}g/L$ of uranium (i.e., the maximum contaminant level of the USEPA) and three sites exceed 4,000 pCi/L of radon (i.e., the alternative maximum contaminant level). No samples were found to exceed the 15 pCi/L level of gross alpha or the 5 pCi/L level of radium. The concentration of uranium ranges from 0.02 to $53.7{\mu}g/L$, with a mean of $1.56{\mu}g/L$, a median of $0.47{\mu}g/L$, and a standard deviation of $4.3{\mu}g/L$. The mean concentrations of uranium for the different geological units increase in the following order: Shindong Group, Granites, Hayang Group, Yucheon Group, and Tertiary sedimentary rocks. The concentration of radon ranges from 2 to 8,740 pCi/L, with an mean of 754 pCi/L, a median of 510 pCi/L, and a standard deviation of 907 pCi/L. The mean radon concentrations for the investigated geological units increase in the following order: Granites, Yucheon Group, Tertiary sedimentary rocks, Hayang Group and Shindong Group. According to the factor analysis for each geological unit, uranium and radon behave independently of each other with no specific correlation. However, radionuclides show close relationships with some components. Regional investigations of radionuclides throughout the country require an integrated approach that considers the main lithological units as well as administrative districts.

Optimal Design of Water Distribution System considering the Uncertainties on the Demands and Roughness Coefficients (수요와 조도계수의 불확실성을 고려한 상수도관망의 최적설계)

  • Jung, Dong-Hwi;Chung, Gun-Hui;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2010
  • The optimal design of water distribution system have started with the least cost design of single objective function using fixed hydraulic variables, eg. fixed water demand and pipe roughness. However, more adequate design is accomplished with considering uncertainties laid on water distribution system such as uncertain future water demands, resulting in successful estimation of real network's behaviors. So, many researchers have suggested a variety of approaches to consider uncertainties in water distribution system using uncertainties quantification methods and the optimal design of multi-objective function is also studied. This paper suggests the new approach of a multi-objective optimization seeking the minimum cost and maximum robustness of the network based on two uncertain variables, nodal demands and pipe roughness uncertainties. Total design procedure consists of two folds: least cost design and final optimal design under uncertainties. The uncertainties of demands and roughness are considered with Latin Hypercube sampling technique with beta probability density functions and multi-objective genetic algorithms (MOGA) is used for the optimization process. The suggested approach is tested in a case study of real network named the New York Tunnels and the applicability of new approach is checked. As the computation time passes, we can check that initial populations, one solution of solutions of multi-objective genetic algorithm, spread to lower right section on the solution space and yield Pareto Optimum solutions building Pareto Front.

Experimental analysis of the sedimentation processes in the movable weir by changing the channel slope considering weir operation (가동보 운영 및 하상경사 변화에 의한 보 상류 퇴사과정의 실험적 분석)

  • Lee, Kyung Su;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.729-737
    • /
    • 2018
  • This study investigates the sediment processes the Improved-pneumatic-movable weir through laboratory experiments considering changing channel slopes. Experimental results show that the delta migrates towards the weir and the delta height increases as time passes. Moreover, as the delta approaches the weir, the delta migration speed decreases. As the dimensionless delta location increases, the effective height of dimensionless delta and the dimensionless reservoir capacity increases. Therefore, under the same slope conditions, the sediment deposition volume of the delta is small as the channel slope is mild. This means that the channel slope affects the development of the delta in the upstream of the Improved-pneumatic-movable weir. At the beginning of the experiment, the foreset slope is mild. However, the foreset slope of the delta increases with water depth as the delta migrates downstream. Moreover, as the slope is mild, the ratio of delta front length to delta height is close to 1, and the dimensionless delta height and the dimensionless delta migration speed decrease. As the delta height increases, the water depth, the velocity approaching to the weir and the delta migration speed decrease.

Investigation on the Hydrodynamic Behaviors of the Clarifier with an Interior Baffle in WWTP by using of Radiotracer $^{99m}Tc$ ($^{99m}Tc$ 추적자를 이용한 하수처리 시설 내 침전조의 정류벽 설치 유무에 따른 유체거동 변화측정)

  • Kim, Jin-Seop;Kim, Jong-Bum;Kim, Jae-Ho;Jung, Sung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.3
    • /
    • pp.117-122
    • /
    • 2007
  • The hydrodynamic behaviors of the clarifier with an interior baffle in a wastewater treatment plant was investigated by using a radiotracer $^{99m}Tc$(30 40 mCi) to verify the results of CFD(computational fluid dynamics) modelling in the previous study. The clarifier model was manufactured with consideration to the hydraulic similarity(1/21) of a real plant($L{\times}W{\times}H:2.6{\times}0.4{\times}0.2m$). By installation of an interior baffle to the clarifier, the strong density current at the bottom of the clarifier decreased substantially and increased the area of sludge settling zone, which were visualized successfully from the radiotracer experiment. Also the portion of short circuit stream changed from 48 % to 32 % and the mean residence time of sludge decreased from 940 sec to 810 sec, which corresponds to the results of CFD modelling. As a result, it is anticipated that radiotracer technology can be used as an important tool for designing new wastewater treatment plants and verifying their performances after structural modifications.

Numerical simulation for variations of water saturation in bentonite buffer under the effect of a rock joint using the TOUGH2 code (TOUGH2 code를 이용한 처분장 절리암반 내 벤토나이트 완충재의 포화도 변화)

  • Kim, Jin-Seop;Cho, Won-Jin;Lee, Kyung-Soo;Choi, Heui-Joo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.575-593
    • /
    • 2012
  • This paper briefly introduces the scope and objectives of SKB Task 8, which is an international cooperative research project. In addition, the hydraulic behaviors of bentonite buffer focusing on the interactions between bentonite and a rock mass with a joint were investigated using TOUGH2 code as part of a sub-mission of Task 8a. The effects of a rock joint and high capillary pressure of bentonite on the re-saturation properties and pressure distribution in a buffer were identified and successfully incorporated in the TOUGH2 code. Based on the numerical results, it was found that the speed of re-saturation in bentonite surrounded by a rock mass with a joint is 2.5 to 12 times faster than that in a condition without a rock joint, while the degree of saturation in the lower part of the buffer material is generally higher than in the upper part in both the cases of with and without a joint. It can be anticipated that the results obtained from this study can be applied to an estimation of the full saturation time and a determination of optimum thickness with regard to the design of the bentonite buffer in a high level waste disposal system.

Influence of Antecedent Rainfall in Stability Analysis of Unsaturated Soil Slope (불포화토 사면 안정해석에서 선행강우의 영향에 관한 연구)

  • Lee, Yeongsaeng;Yoon, Seunghyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1073-1082
    • /
    • 2015
  • The behavior of the unsaturated soil slope can be influenced by the various factors such as the hydraulic characteristics, the mechanical characteristics, the coefficient of conductivity, the stratifications, the rainfall conditions i.e. the rainfall intensity, the rainfall pattern, the duration time of the rainfall and the antecedent rainfall etc. It is known that the slope failure is influenced greatly by the antecedent rainfall rather than the rainfall condition at the failure time, so the antecedent rainfall is supposed to be a very important factor in slope stability analysis among these factors. To predict and to prevent the slope failure by the rainfall, the distribution of the matric suction by the antecedent rainfall must be considered first of all and the slope stability analysis should be carried out by considering the successive rainfall characteristics. In this research, 3 samples with different quantity (5%, 10%, 20%) of silts were prepared and the SWCC (Soil-water characteristic curve) tests were carried out and the associated parameters were analyzed. After analyzing the distribution of the matric suction and the change of the mechanical characteristics such as the stress and the strength when applying the antecedent rainfall for one month and the successive intensive rainfall for 12 hours, the slope stability analyses were carried out numerically. And the influence of the antecedent rainfall for one month and the SWCC on the stability of a slope were compared and analyzed.