• Title/Summary/Keyword: 수동 소나 표적

Search Result 55, Processing Time 0.019 seconds

Passive sonar signal classification using attention based gated recurrent unit (어텐션 기반 게이트 순환 유닛을 이용한 수동소나 신호분류)

  • Kibae Lee;Guhn Hyeok Ko;Chong Hyun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.345-356
    • /
    • 2023
  • Target signal of passive sonar shows narrow band harmonic characteristic with a variation in intensity within a few seconds and long term frequency variation due to the Lloyd's mirror effect. We propose a signal classification algorithm based on Gated Recurrent Unit (GRU) that learns local and global time series features. The algorithm proposed implements a multi layer network using GRU and extracts local and global time series features via dilated connections. We learns attention mechanism to weight time series features and classify passive sonar signals. In experiments using public underwater acoustic data, the proposed network showed superior classification accuracy of 96.50 %. This result is 4.17 % higher classification accuracy compared to existing skip connected GRU network.

Interference Pattern Analysis of the Radiated Noise in Submarine Passive Sonar (잠수함 수동소나에서 방사소음의 간섭패턴 분석)

  • Kim, ByoungUk;An, SangKyum;Lee, Kuenhwa;Seong, WooJae;Hahn, JooYoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.456-464
    • /
    • 2013
  • Passive sonar in submarine can detect the target in long range and can attack using it. There are many noises which can be received at passive sonar of submarine. When noise received in the sonar it make diverse interference pattern depend on the ocean ambient and movement scenario. Interference pattern can be explained by theory of waveguide invariant. In this paper, analyze the interference pattern according to the relative motions of surface ship and submarine. And analyze the occurrence reason of 2 kinds of interference patterns those are usually display on the submarine console. The results show that if relative speed of submarine and target increase then gradient of interference pattern will increase. And closest point approach of submarine and target decrease then gradient of interference pattern will increase. Bathtube pattern usually appear when target pass though close to submarine and Pinetree pattern appear target pass though above of submarine.

Position error estimation of sub-array in passive ranging sonar based on a genetic algorithm (유전자 알고리즘 기반의 수동측거소나 부배열 위치오차 추정)

  • Eom, Min-Jeong;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol;Oh, Se-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.630-636
    • /
    • 2019
  • Passive Ranging Sonar (PRS) is a type of passive sonar consisting of three sub-array on the port and starboard, and has a characteristic of detecting a target and calculating a bearing and a distance. The bearing and distance calculation requires physical sub-array position information, and the bearing and distance accuracy performance are deteriorated when the position information of the sub-array is inaccurate. In particular, it has a greater impact on distance accuracy performance using plus value of two time-delay than a bearing using average value of two time-delay. In order to improve this, a study on sub-array position error estimation and error compensation is needed. In this paper, We estimate the sub-array position error based on enetic algorithm, an optimization search technique, and propose a method to improve the performance of distance accuracy by compensating the time delay error caused by the position error. In addition, we will verify the proposed algorithm and its performance using the sea-going data.

Study on Bearing and Frequency Target Motion Analysis for Passive Line Array SONAR Using Accumulative Batch Estimation (누적 일괄추정 기법을 이용한 수동 선배열 소나 방위 주파수 - 표적기동분석 연구)

  • Kim, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.788-796
    • /
    • 2016
  • Bearing and frequency measurements of TMA (Target Motion Analysis) in passive line array SONAR have lower bearing rate and frequency doppler, and are not detected or tracked continuously because of various ocean environments. This is a main reason to effect the TMA performance and it takes a long time to get TMA solutions. We propose the bearing and frequency TMA(BFTMA) using accumulative batch estimation to solve the TMA problem of line array passive SONAR. The accumulative batch estimation structure is based on MLE (Maximum Likelihood Estimation) but used accumulative measurements. The accumulative batch estimation is applied for the BFTMA with nonlinear Kalman filter to estimate the target range, speed and course. Simulation and sea data analysis were carried out to verify the performance and applicability of the proposed techniques.

Own-ship noise cancelling method for towed line array sonars using a beam-formed reference signal (기준 빔 신호를 이용한 예인선배열 소나의 자함 소음 제거 기법)

  • Lee, Dan-Bi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.559-567
    • /
    • 2020
  • This paper proposes a noise cancelling algorithm to remove own-ship noise for a towed array sonar. Extra beamforming is performed using partial channels of the acoustic array to get a reference beam signal robust to the noise bearing. Frequency domain Adaptive Noise Cancelling (ANC) is applied based on Normalized Least Mean Square (NLMS) algorithm using the reference beam. The bearing of own-ship noise is estimated from the coherence between the reference beam and input beam signals. Own-ship noise level is calculated using a beampattern of the noise with estimated steering angle, which prevents loss of a target signal by determining whether to update a filter so that removed signal level does not exceed the estimated noise level. Simulation results show the proposed algorithm maintains its performance when the own-ship gets out off its bearing 40 % more than the conventional algorithm's limit and detects the target even when the frequency of the target signal is same with the frequency of the own-ship signal.

A Study on the Automatic Detection and Extraction of Narrowband Multiple Frequency Lines (협대역 다중 주파수선의 자동 탐지 및 추출 기법 연구)

  • 이성은;황수복
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.78-83
    • /
    • 2000
  • Passive sonar system is designed to classify the underwater targets by analyzing and comparing the various acoustic characteristics such as signal strength, bandwidth, number of tonals and relationship of tonals from the extracted tonals and frequency lines. First of all the precise detection and extraction of signal frequency lines is of particular importance for enhancing the reliability of target classification. But, the narrowband frequency lines which are the line formed in spectrogram by a tonal of constant frequency in each frame can be detected weakly or discontinuously because of the variation of signal strength and transmission loss in the sea. Also, it is very difficult to detect and extract precisely the signal frequency lines by the complexity of impulsive ambient noise and signal components. In this paper, the automatic detection and extraction method that can detect and extract the signal components of frequency tines precisely are proposed. The proposed method can be applied under the bad conditions with weak signal strength and high ambient noise. It is confirmed by the simulation using real underwater target data.

  • PDF

Multiband Enhancement for DEMON Processing Algorithms (대역 분할 처리를 통한 데몬 처리 성능 향상 기법)

  • Cheong, Myoung Jun;Hwang, Soo Bok;Lee, Seung Woo;Kim, Jin Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.138-146
    • /
    • 2013
  • Passive sonars employ DEMON (Detection of Envelope Modulation on Noise) processing to extract propeller information from the radiated noise of underwater targets. Conventional DEMON processing improves SNR(Signal to Noise Ratio) characteristic by Welch method. The conventional Welch method overlaps several different time domain DEMON outputs to reduce the variance. However, the conventional methods have high computational complexity to get high SNR with correlated acoustic signals. In this paper, we propose new DEMON processing method that divides acoustic signal into several frequency bands before DEMON processing and averages each DEMON outputs. Therefore, the proposed method gathers independent acoustic signal faster than conventional method with low computational complexity. We prove the performance of the proposed method with mathematical analysis and computer simulations.

Simulation and analysis of the effects of bistatic sonar detection performance induced by reverberation in the East Sea (동해 심해환경에서 잔향음에 의한 양상태 탐지성능 영향 모의 및 분석)

  • Wonjun Yang;Dae Hyeok Lee;Ji Seop Kim;Hoseok Sul;Su-Uk Son;Hyuckjong Kwon;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.445-454
    • /
    • 2024
  • To detect underwater targets using sonar, sonar performance analysis that reflects the ocean environment and sonar characteristics must be performed. Sonar performance modeling of passive and monostatic sonar can be performed relatively quickly even considering the ocean environment. However, since bistatic and multistatic sonar performance modeling require higher computational complexity and much more time than passive or monostatic sonar cases, they have been performed by simplifying or not considering the ocean environment. In thisstudy, the effects of reverberation and ocean environment in bistatic sonar performance were analyzed using the bistatic reverberation modeling in the Ulleung Basin of the East Sea. As the sonar operation depth approaches the sound channel axis, the influence of the bathymetry on sound propagation is reduced, and the reverberation limited environment is formed only at short distances. Finally, it was confirmed that similar trends appeared through comparison between the simplified and elaborately calculated sonar performance modeling results.

Improvement of Target Motion Analysis for a Passive Sonar System with Measurement Bias Estimation (측정각 Bias 보상을 통한 수동소나체계의 표적기동분석 성능 향상 연구)

  • Yoo, Phil-Hoon;Song, Taek-Lyul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2011-2013
    • /
    • 2001
  • In this paper the MMAE(Multiple Model Adaptive Estimation) algorithm using the MGEKF(Modified Gain Extended Kalman Filter) of which modes are set to be measurement biases is proposed to enhance the performance of target tracking with bearing only measurements. The state are composed of relative position, relative velocity and taregt acceleration. The mode probability is calculated from the bearing only measurements from the HMS(Hull-Mounted Sonar). The proposed algorithm is tested in a series of computer simulation runs.

  • PDF

Implementation of the omnidirectional target bearing detector utilizing towed linear arrays (예인선배열 센서를 이용한 전방위 표적방위 탐지기 구현)

  • 이성은;천승용;황수복;이형욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • Passive sonar system forms the various beams in any desired directions to obtain the improvement in Signal-to-Noise(S/N) ratio, bearing detection and localization of targets, and the attenuation of interferences from other directions. Detection of modern underwater targets is becoming increasingly difficult as noise reduction technology leads to considerably low-level acoustic emissions. Therefore, the improvement of beamforming is very important to detect modern underwater targets at the long range in the complex environmental sea. Also, to react to the fast attack mobiles such as torpedoes, port and starboard discrimination is required to be performed very quickly. In this paper, we proposed the implementation of omnidirectional target bearing detector without port and starboard ambiguity to detect effectively the low-level underwater targets. The port and starboard discrimination is performed by cardioid processing and the improvement of beamforming utilizes the cross correlation matrix of individual hydrophone pairs of linear array sensors. The sea test result shows that the system implemented is good for the detection of the low-level underwater targets.