• Title/Summary/Keyword: 수동휠체어

Search Result 34, Processing Time 0.021 seconds

Development of In-wheel Motor for Power Add-on Drive Wheelchair (수전동 휠체어용 모터 개발)

  • Hong, Eung-Pyo;Park, Sei-Hoon;Oh, Hong-Seok;Ryu, Jae-Cheong;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.992-999
    • /
    • 2011
  • The recent power add-on drive wheelchairs (PADWs) provide greater physical activity, are easier to transport, and may be an excellent alternative for the typical manual or electric wheelchairs. The development of in-wheel motor for a PADW is the principal issues. In this paper, design, implementation, and testing of the permanent magnet synchronous motor (PMSM) for a PADW are presented. To design output power and torque of the motor, the equation of motion has been investigated. The design parameters were calculated and the dimension and shape of the motor which was limited by the In-wheel mechanism of the PADW were done by applying FEM and optimal design technique. The prototype of the motor mentioned above was fabricated with precise machining and assembling. Then the motor tested on dynamometer and the measured results of the motor were verified by comparing the design results. The fabricated motor was 80 mm in length with a diameter of 110 mm and small enough to be attached the driving unit of the PADW.

Development of Motorized Wheelchair INMEL-VII for Model of Practical Use (전동화 수동 휠체어의 실용화 모델 INMEL-VII의 개발)

  • Kim, Y.Y.;Kim, J.M.;Yang, K.M.;Jeong, D.M.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.92-95
    • /
    • 1994
  • We developed electric wheelchair INMEL-VI which is motorized wheelchair for practical use. The field test results of long time show some problems to disabled in daily use. INMEL-VII is designed to solve the problems of INMEL-VI and to adjust condition by the Korean Industrial Standards about the motorized wheelchair. Especially, it is improved to have durability, driving safety, and convenience of manipulating. In the driving field test in indoors and outdoors, it has been estimated to have a high practical use for powered walking aids to disable's daily life.

  • PDF

Design of Manual Wheelchair with a Function of Bed Transfer (침대 이송 기능을 갖춘 수동식 휠체어 설계)

  • Ko, Hyunjun;Kim, Namyeul;Hyun, Jungguen;Jeong, Woochul;Kang, Mowon;Kim, Jonghyeong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.580-586
    • /
    • 2013
  • In general, manual wheelchairs have played important roles in moving patients from one place to another. However, patients have experienced discomfort getting on and off because of the need for physical assistance. This can be more serious if a patient has handicaps involving the arms or legs. In addition, it could be unpleasant for both the patient and assistant because of the need for extensive physical contact with each other. At times, a weak nurse feels that there is a risk when transferring a heavy patient from a bed to a wheelchair. In this paper, a new non-powered wheelchair is designed to assist in transferring a patient to their bed. This design considers the convenience of both the patient and assistant when the patient is transferred from a wheelchair to a bed and vice versa. The operation minimizes the physical contact between the assistant and the patient. The new wheelchair is also lightweight and portable compared with the normal popular wheelchair.

Upper Extremity Biomechanics of Manual Wheelchair Propulsion at Different Speeds (수동 휠체어 추진 속도에 따른 상지 관절 생체역학적 영향 분석)

  • Hwang, Seonhong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.241-250
    • /
    • 2022
  • It is known that chronic pain and injury of upper limb joint tissue in manual wheelchair users is usually caused by muscle imbalance, and the propulsion speed is reported to increase this muscle imbalance. In this study, kinematic variables, electromyography, and ultrasonographic images of the upper limb were measured and analyzed at two different propulsion speeds to provide a quantitative basis for the risk of upper extremity joint injury. Eleven patients with spinal cord injury for the experimental group (GE) and 27 healthy adults for the control group (GC) participated in this study. Joint angles and electromyography were measured while subjects performed self-selected comfortable and fast-speed wheelchair propulsion. Ultrasound images were recorded before and after each propulsion task to measure the acromiohumeral distance (AHD). The range of motion of the shoulder (14.35 deg in GE; 20.24 deg in GC) and elbow (5.25 deg in GE; 2.57 deg in GC) joints were significantly decreased (p<0.001). Muscle activation levels of the anterior deltoid, posterior deltoid, biceps brachii, and triceps brachii increased at fast propulsion. Specifically, triceps brachii showed a significant increase in muscle activation at fast propulsion. AHD decreased at fast propulsion. Moreover, the AHD of GE was already narrowed by about 60% compared to the GC from the pre-tests. Increased load on wheelchair propulsion, such as fast propulsion, is considered to cause upper limb joint impingement and soft tissue injury due to overuse of the extensor muscles in a narrow joint space. It is expected that the results of this study can be a quantitative and objective basis for training and rehabilitation for manual wheelchair users to prevent joint pain and damage.