• Title/Summary/Keyword: 수계예측모델

Search Result 82, Processing Time 0.033 seconds

Hydrologic Design Parameters of Small Hydro Power Sites for River Systems (소수력발전입지의 수계별 수문학적 설계변수 특성)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.224-224
    • /
    • 2011
  • 5대 주요 수계의 소수력자원에 대하여 연구를 수행하였고, 하천의 유량지속특성을 예측할 수 있는 모델이 개발되었으며, 이를 이용하면 강우사상으로 야기되는 유입량의 변화에 대한 분석이 가능하다. 또한 소수력발전소의 성능을 예측할 수 있는 모델도 개발되었다. 안동댐에서 측정된 월유입량 자료를 분석하였으며,. 본 연구를 통해 개발된 모델을 이용하여 예측한 결과는 안동댐에서 오랜기간 동안 측정된 결과와 거의 일치되는 것으로 나타났다. 이는 개발된 모델들이 소수력발전입지의 이용가능한 잠재량과 기술적 잠재량을 예측하는데 효과적인 것으로 밝혀졌다. 본 모델들을 이용하여 수계별로 소수력발전입지에 대한 수문학적 성능을 분석하였다. 분석결과 소수력발전 입지의 수문학적 성능특성은 수계별로 차이가 있는 것으로 나타났다. 특히 북한강과 낙동강수계에 위치한 소수력발전입지의 비설계유량과 비출력량은 다른 수계들 보다 차이가 큰 것으로 나타났다. 그림 1은 수계별 비설계유량에 따른 비출력량의 변화를 나타낸다.

  • PDF

Geographical Distributuon Characteristics of Small Hydropower Resources (소수력자원의 지리적 분포특성)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.769-773
    • /
    • 2010
  • 수계별 소수력자원의 특성에 대한 연구가 수행되었다. 이를 분석하기 위하여 유량지속특성을 예측할 수 있는 모델이 개발되었고, 이를 기반으로 하여 소수력발전소의 수문학적 성능특성을 예측할 수 있는 모델이 개발되었다. 개발된 모델의 효용성을 확인하기 위하여 안동댐에서 측정된 월유입량자료를 분석하였다. 안동댐에서의 장기유입량을 분석한 결과, 본 연구에서 개발된 예측모델로부터 획득한 결과가 실측자료와 잘 일치하였다. 본 연구에서 개발된 모델은 소수력발전지점의 수력가용량과 연간출력량을 예측하는데 유용하게 사용될 수 있다는 것이 밝혀졌다. 개발된 모델을 이용하여 주요 수계에 위치한 소수력발전입지의 수문학적 성능특성을 분석한 결과 수계별로 차이를 나타냈다. 특히 북한강수계와 낙동강수계에 위치한 소수력발전입지는 다른 수계에 위치한 소수력발전입지에 비하여 비설계유량과 비출력 등에 대한 수문학적 성능에 많은 차이를 나타냈다.

  • PDF

Development and Evaluation of Flood Prediction Models Using Artificial Intelligence Techniques (인공지능 기법을 활용한 홍수예측모델 개발 및 평가 - 한강수계 댐을 중심으로 -)

  • Cho, Hemie;Uranchimeg, Sumiya;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.131-131
    • /
    • 2022
  • 기후변화의 영향으로 극치강우의 변동성이 커지고 있으며 계획빈도를 초과하는 폭우로 피해가 증가하고 있다. 기존의 물리기반의 홍수예측모델은 개념적 및 구조적 제약과 함께 다양한 유역조건 및 수문기상 조건에 기인한 강우-유출 관계의 불확실성을 고려하는 데 한계가 있다. 특히 한정된 홍수 사상을 통해 구축된 관측 자료로 인해 새로운 홍수 사상 예측 능력이 저조할 수밖에 없다. 따라서 기존 물리모형 기반의 홍수예측과 함께, 딥러닝(deep learning) 모형을 고려한 홍수예측 모델 개발과 개선이 필요하다. 본 연구에서는 다양한 분야에서 활용되는 인공지능(artificial intelligence, AI) 기술을 종합적으로 검토하고, 홍수 예측 측면에서의 활용 가능성 및 신뢰성을 고려하여 AI 기법을 채택하였다. 한강수계에 존재하는 댐 중 일부를 선정하여 대상 댐의 수문·기상학적 자료를 전처리한 후, 인공지능 기반의 홍수예측모형을 구축 및 최적화하였다. 다양한 예측인자와 모델 구성으로 홍수예측력에 대한 평가를 다각적으로 수행함으로써 홍수예측모델의 신뢰성을 제고하였다. 전반적으로 우수한 결과를 도출하였고, 유역면적이 작을수록 결과가 좋았다. 이는 넓은 유역일수록 복잡한 강우-유출 과정이 내재되어 있기 때문으로 판단되며, 넓은 유역에는 본 연구에서 활용한 자료에 추가적인 자료를 도입하여 모형 개선이 이루어져야 할 것으로 판단하였다. 수문 예측 연구에 통계모형이나 기계학습모형의 적용은 많이 있었지만, 딥러닝 기법 활용은 새로운 시도라는 점에서 의미가 있다.

  • PDF

Application of Water Model for the Evaluation of Pesticide Exposure (농약의 노출 평가를 위한 수계예측모형의 적용)

  • Son, Kyeong-Ae;Kim, Chan-Sub;Gil, Geun-Hwan;Kim, Taek-Kyum;Kwon, Hyeyoung;Kim, Jinbae;Im, Geon-Jae;Ihm, Yang-Bin
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.236-246
    • /
    • 2014
  • Pesticide is used to protect the crops, but also become a cause of polluting the environment. Perform a risk assessment using physical and chemical properties, environmental fate and toxicity data in order to determine the pesticide registration. The aquatic model estimates pesticide concentrations in water bodies that result from pesticide applications to rice paddies and apple orchard. The used models are the PRZM, EXAMS and AGRO shell (PA5), Rice Water Quality Model (RICEWQ) and Screening Concentration In GROund Water (SCI-GROW). The residual concentration of water body was estimated using meteorological data, crop calendar and soil series of Korea. The chosen pesticides were butachlor, carbofuran, iprobenfos and tebuconazole. It has shown the potential that the RICEWQ is possible to predict residue level in water of butachlor and iprobenfos, because the maximum value in water monitoring data is lower than the peak concentration of the model, and the minimum value is lower than the average annual concentration of the model. But RICEWQ was insufficient to predict exposure concentrations in ground water. The estimated exposure concentrations of carbofuran in ground water is very higher than in surface water because of its low soil adsorption coefficient. Although tebuconazole were not detected in the water monitoring that means very low concentration, it is possible that the PA5 can be used to predict residue level in water.

A Study on the Basic Planning of Country Club Using Photogrammetry (사진측량을 이용한 초구장 기본 계획에 관한 연구)

  • 유복모;조기성;박성규
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.1
    • /
    • pp.31-40
    • /
    • 1990
  • In this study, sample area was selected to compare the conventional method with photogrammetic method in basic planning of country club. Also various elements of planning, such as vegetation and water system, were considered through interpretation of aerial photographs and topographic maps, vegetation maps and water system maps were made as well as digital terrain models. These were used to analyse tophographic changes and landscape. As a result of comparing with the conventional method, it was shown that photographic interpretation could give more detail values than the conventional method, and that the digital terrain model could predict changes of topography, landscape and water system with more asccuracy. Consequently, the method of digital terrain model and photographic interpretation proved to be more effective than the conventional method in the case of water treatment, and planning of landscape and land utility.

  • PDF

A Study on the Prediction Model for Analysis of Water Quality in Gwangju Stream using Machine Learning Algorithm (머신러닝 학습 알고리즘을 이용한 광주천 수질 분석에 대한 예측 모델 연구)

  • Yu-Jeong Jeong;Jung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.531-538
    • /
    • 2024
  • While the importance of the water quality environment is being emphasized, the water quality index for improving the water quality of urban rivers in Gwangju Metropolitan City is an important factor affecting the aquatic ecosystem and requires accurate prediction. In this paper, the XGBoost and LightGBM machine learning algorithms were used to compare the performance of the water quality inspection items of the downstream Pyeongchon Bridge and upstream BanghakBr_Gwangjucheon1 water systems, which are important points of Gwangju Stream, as a result of statistical verification, three water quality indicators, Nitrogen(TN), Nitrate(NO3), and Ammonia amount(NH3) were predicted, and the performance of the predictive model was evaluated by using RMSE, a regression model evaluation index. As a result of comparing the performance after cross-validation by implementing individual models for each water system, the XGBoost model showed excellent predictive ability.

Machine Learning Algorithms Evaluation and CombML Development for Dam Inflow Prediction (댐 유입량 예측을 위한 머신러닝 알고리즘 평가 및 CombML 개발)

  • Hong, Jiyeong;Bae, Juhyeon;Jeong, Yeonseok;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.317-317
    • /
    • 2021
  • 효율적인 물관리를 위한 댐 유입량 대한 연구는 필수적이다. 본 연구에서는 다양한 머신러닝 알고리즘을 통해 40년동안의 기상 및 댐 유입량 데이터를 이용하여 소양강댐 유입량을 예측하였으며, 그 중 고유량과 저유량예측에 적합한 알고리즘을 각각 선정하여 머신러닝 알고리즘을 결합한 CombML을 개발하였다. 의사 결정 트리 (DT), 멀티 레이어 퍼셉트론 (MLP), 랜덤 포레스트(RF), 그래디언트 부스팅 (GB), RNN-LSTM 및 CNN-LSTM 알고리즘이 사용되었으며, 그 중 가장 정확도가 높은 모형과 고유량이 아닌 경우에서 특별히 예측 정확도가 높은 모형을 결합하여 결합 머신러닝 알고리즘 (CombML)을 개발 및 평가하였다. 사용된 알고리즘 중 MLP가 NSE 0.812, RMSE 77.218 m3/s, MAE 29.034 m3/s, R 0.924, R2 0.817로 댐 유입량 예측에서 최상의 결과를 보여주었으며, 댐 유입량이 100 m3/s 이하인 경우 앙상블 모델 (RF, GB) 이 댐 유입 예측에서 MLP보다 더 나은 성능을 보였다. 따라서, 유입량이 100 m3/s 이상 시의 평균 일일 강수량인 16 mm를 기준으로 강수가 16mm 이하인 경우 앙상블 방법 (RF 및 GB)을 사용하고 강수가 16 mm 이상인 경우 MLP를 사용하여 댐 유입을 예측하기 위해 두 가지 복합 머신러닝(CombML) 모델 (RF_MLP 및 GB_MLP)을 개발하였다. 그 결과 RF_MLP에서 NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, R2 0.859, GB_MLP의 경우 NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, R2 0.831로 CombML이 댐 유입을 가장 정확하게 예측하는 것으로 평가되었다. 본 연구를 통해 하천 유황을 고려한 여러 머신러닝 알고리즘의 결합을 통한 유입량 예측 결과, 알고리즘 결합 시 예측 모형의 정확도가 개선되는 것이 확인되었으며, 이는 추후 효율적인 물관리에 이용될 수 있을 것으로 판단된다.

  • PDF

Development of a storage level estimation and forecasting techniques in Yongdam Dam basin for drought monitoring using satellite data (가뭄감시를 위한 위성자료 기반 용담댐 유역 저수위 모니터링 및 예측 기술 개발)

  • Park, Kyung Won;Yoon, Sun Kwon;Lee, Seong Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.378-378
    • /
    • 2019
  • 본 연구에서는 용담댐 유역을 대상으로 저수위/저수량 모니터링 및 예측을 위하여 고해상도 위성관측 자료를 이용하는 방법과 위성으로부터 추출한 강수량 자료로부터 가뭄지수를 이용한 저수위를 모니터링하고 SSA를 이용한 PCA방법으로 예측모델을 구축하여 가뭄을 예측하는 방법을 개발하였다. 용담댐 저수위와 SPI(3)와의 상관계수가 0.78로 매우 높은 상관성을 보였으며, 위성자료를 통하여 산정한 가뭄지수를 활용하여 댐 저수위/저수량 모니터링 및 예측 가능성을 진단하였다. SSA에 의한 주성분 분석결과 SPI(3)과 각 RC자료의 상관관계를 분석한 결과 CC=0.87~0.99의 높은 상관성을 보였으며, 표준화된 댐 저수위(N-W.S.L.)와 RC자료의 상관관계를 분석한 결과 CC=0.83~0.97의 비교적 높은 상관성을 보임을 확인하였다. 또한, Sentinel-2 위성의 MSI (Multi-Spectral Instrument) 센서로 댐수위의 변화를 모니터링하기 위해 지수 기법을 적용하여 수체 탐지 알고리즘을 개발하였으며, 용담댐유역에 대해 2016년부터 2018년까지의 수계 면적 변화를 분석하였다. 이를 기반으로 Sentinel-2 위성영상으로 추출한 수계 면적 변화를 이용하여 가뭄감시 분야에 대한 활용 가능성을 제시하였다. 본 연구의 결과는 다양한 위성관측자료로부터 미계측 지역의 저수량 모니터링과 수문학적 가뭄 모니터링/예측에 활용이 가능할 것이다.

  • PDF

Dam Inflow Prediction and Evaluation Using Hybrid Auto-sklearn Ensemble Model (하이브리드 Auto-sklearn 앙상블 모델을 이용한 댐 유입량 예측 및 평가)

  • Lee, Seoro;Bae, Joo Hyun;Lee, Gwanjae;Yang, Dongseok;Hong, Jiyeong;Kim, Jonggun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.307-307
    • /
    • 2022
  • 최근 기후변화와 댐 상류 토지이용 변화 등과 같은 다양한 원인에 의해 댐 유입량의 변동성이 증가하면서 댐 관리 및 운영조작 의사 결정에 어려움이 발생하고 있다. 따라서 이러한 댐 유입량의 변동 특성을 반영하여 댐 유입량을 정확하고 효율적으로 예측할 수 있는 방안이 필요한 실정이다. 머신러닝 기술이 발전하면서 Auto-ML(Automated Machine Learning)이 다양한 분야에서 활용되고 있다. Auto-ML은 데이터 전처리, 최적 알고리즘 선택, 하이퍼파라미터 튜닝, 모델 학습 및 평가 등의 모든 과정을 자동화하는 기술이다. 그러나 아직까지 수문 분야에서 댐 유입량을 예측하기 위한 모델을 개발하는데 있어서 Auto-ML을 활용한 사례는 부족하고, 특히 댐 유입량의 예측 정확성을 확보하기 위해 High-inflow and low-inflow 의 변동 특성을 고려한 하이브리드 결합 방식을 통해 Auto-ML 기반 앙상블 모델을 개발하고 평가한 연구는 없다. 본 연구에서는 Auto-ML의 패키지 중 Auto-sklearn을 통해 홍수기, 비홍수기 유입량 변동 특성을 반영한 하이브리드 앙상블 댐 유입량 예측 모델을 개발하였다. 소양강댐을 대상으로 적용한 결과, 하이브리드 Auto-sklearn 앙상블 모델의 댐 유입량 예측 성능은 R2 0.868, RMSE 66.23 m3/s, MAE 16.45 m3/s로 단일 Auto-sklearn을 통해 구축 된 앙상블 모델보다 전반적으로 우수한 것으로 나타났다. 특히 FDC (Flow Duration Curve)의 저수기, 갈수기 구간에서 두 모델의 유입량 예측 경향은 큰 차이를 보였으며, 하이브리드 Auto-sklearn 모델의 예측 값이 관측 값과 더욱 유사한 것으로 나타났다. 이는 홍수기, 비홍수기 구간에 대한 앙상블 모델이 독립적으로 구축되는 과정에서 각 모델에 대한 하이퍼파라미터가 최적화되었기 때문이라 판단된다. 향후 본 연구의 방법론은 보다 정확한 댐 유입량 예측 자료를 생성하기 위한 방안 수립뿐만 아니라 다양한 분야의 불균형한 데이터셋을 이용한 앙상블 모델을 구축하는데도 유용하게 활용될 수 있을 것으로 사료된다.

  • PDF