• 제목/요약/키워드: 숏폼 패션영상

검색결과 2건 처리시간 0.013초

숏폼 패션영상의 특성과 제작에 관한 연구 (A Study on the Characteristics and Production of Short-form Fashion Video)

  • 김세진
    • 한국의류학회지
    • /
    • 제45권1호
    • /
    • pp.200-216
    • /
    • 2021
  • This article considers short-form fashion videos as distinguished from fashion films, defines the concept, details the expressive characteristics of short-form fashion video, and reveals the method of producing it. For the methodology, a literature review was conducted to derive the concept and expression techniques. A case study was also performed to define the expressive characteristics. Five short-form fashion videos were also produced based on the results. The final results are as follows. First, short-form fashion video was defined as a fashion medium on the purpose of fashion communication within 60 seconds and classified by three digital image formats. Second, the result of analyzing the expression of the short-form fashion video shows the simplicity and reconstitution, characterization and remediation, borderless and expansion, and synesthesia trigger of the fashion image. Third, five short-form fashion videos were produced based on the theme of the digital garden. It shows that the short-form fashion video intensively expresses the content as a medium whose sensational expression is more prominent than the composition of the story by the short running time that reflects the taste of digital mainstream.

MF sampler: 동영상 기반 패션 검색 모델의 성능 향상을 위한 샘플링 방법 (MF sampler: Sampling method for improving the performance of a video based fashion retrieval model)

  • 백상훈;박종혁
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.329-346
    • /
    • 2022
  • 최근 소셜 미디어의 숏폼(Short form) 동영상(인스타그램, 틱톡, 유튜브) 시장이 점차 증가하면서 인공지능 영역에서는 이를 활용한 연구가 활발히 진행되고 있다. 대표적인 연구분야로 동영상 내의 패션 상품을 탐지하고 상품 이미지를 검색하는 Video to shop 을 들 수 있다. 이와 같은 동영상 기반 인공지능 모델에서는 Convolution 연산을 사용하여 상품의 특징을 추출한다. 하지만 연산 자원의 제한으로 인해, 동영상의 모든 프레임을 사용하여 특징을 추출하는 것은 현실적으로 불가능하다. 이로 인해, 기존 연구에서는 전체 프레임 중 일부만 샘플링해서 사용하거나, 주제의 특성을 활용한 샘플링 방법을 개발하여 이를 통해 위 문제점을 개선하고, 모델의 성능도 향상시켰다. 기존의 Video to shop 연구에서는 프레임을 샘플링 할 때, 무작위로 일부분의 프레임을 샘플링하거나 균등한 간격으로 샘플링 한다. 하지만 이러한 샘플링 방법은 상품이 존재하지 않는 노이즈 프레임을 샘플링 하면서 패션 상품 검색 모델의 성능을 저하시킨다. 이에 본 연구는 노이즈 프레임을 제거하고 검색 모델의 성능을 향상시키는 샘플링 방법 MF(Missing Fashion items on frame) sampler를 제안한다. MF sampler는 키 프레임 메커니즘(Mechanism)을 발전시켜 자원 한계의 문제점을 개선했다. 또한, 노이즈 탐지 모델을 활용한 노이즈 프레임 제거를 통해 검색 모델의 성능을 향상시켰다. 이와 같은 결과는 실험을 통해 확인되었고, Video to shop 패션 상품 검색에 있어 성능 향상과 효과적인 학습이 가능하다는 것을 확인할 수 있었다.