• 제목/요약/키워드: 쇼트 블라스팅

검색결과 2건 처리시간 0.015초

유한요소해석을 이용한 스테인리스 스틸의 쇼트 블라스팅 공정 최적화 (Finite Element Analysis for Shot Blasting Process Optimization of Stainless Steel)

  • 송승엽;박준영;김준식
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.22-27
    • /
    • 2013
  • A shot blasting process is to improve the surface quality of stainless steels. The process is similar to a well-known shot peening that is used to strengthen the surface via the residual stress. In the shot blasting process, it is important to decide many parameters, such as the size, incident angle and velocity of shot balls, to effectively get rid of the iron oxide on the surface of stainless steels. In this study, the simulation of the shot blasting process is carried out by a finite element software, which can help to find out the optimal design parameters to cause the delamination of the iron oxide from the stainless steel substrate. The results obtained are also compared to those of the discrete element method to verify them.

쇼트 블라스팅 표면처리를 통한 미세홀 방전가공 성능향상에 관한 연구 (A Study on Performance Improvement of Electrical Discharge Machining for Producing Micro-holes Using a Shot Blasting Surface Treatment)

  • 장한석;김홍석;신기훈
    • 소성∙가공
    • /
    • 제21권5호
    • /
    • pp.312-318
    • /
    • 2012
  • With an increasing trend toward miniaturization, electrical discharge machining(EDM) has been receiving a lot of attention as a suitable production technology for micro-parts, since it enables the machining of hard conductive materials with a high degree of repeatability and without alteration to the material. When a micro-hole is fabricated by EDM, however, the diameter of the inlet hole is larger than that of the outlet region due to the additional discharge effect caused by the eroded particles. In this paper, a shot blasting surface treatment, in which an abrasive material is accelerated through a pressurized nozzle and directed at the surface of a part, is suggested as an effective method to reduce the tapered shape of EDM micro-hole. In addition, the influence of process parameters such as spark-on time and electrode diameter on the machining performance was investigated. It is shown quantitatively that the difference in diameter between the inlet and outlet holes decreases with the shot blasting treatment and with decreasing spark-on time.