• Title/Summary/Keyword: 송림도

Search Result 132, Processing Time 0.017 seconds

Studies on the Species Crossabilities in the Genus Pinus and Principal Characteristics of F1 Hybrids (일대잡종송(一代雜種松)의 교배친화력(交配親和力)과 특성(特性)에 관(關)한 연구(硏究))

  • Ahn, Kun Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.16 no.1
    • /
    • pp.1-32
    • /
    • 1972
  • By means of the interspecific hybridization in the Sub-genus Diploxylon of the Genus Pinus, $F_1$ hybrids of Pinus rigida${\times}$elliottii, Pinus rigida${\times}$radiata, P. rigida${\times}$serotina and P. densiflora${\times}$thunbergii had been produced. And on the basis of the crossabilities of these hybrids the taxonomic affinities of these pines were examined. And the needle characteristics of these hybrid and the occurence of phenolic substances in these $F_1$ hybrid were also investigated to see the potential usefulness of these characteristics for the diagnosis of the taxonomic affinity. And, the growth performances of the $F_1$ hybrids have also been compared with those of parental species. In order to contribute to the establishment of the hybrid seed orchard the introgression phenomena between P. densiflora and P. thunbergii in the eastern coastal area have also been investigated along with the investigation of the heterozygosity of plus trees of P. densiflora growing in the clone bank in Suwon. And the results were summarized as follows. 1. On the basis of crossabilities as well as on the taxonomic affinities according to the systems of Shaw, Pilger and Duffield, it has been proven that the parental species of those hybrids are of close affinities and range of the fertile hybrid seed production rate was as high as 28-58% in the best hybrid combination (Table 13). 2. Among those hybrids, the ${\times}$ Pinus, rigiserotina hybrid seemed to be most promising in the growth performance exhibiting 109-155% more volume growth compared to the seed parent with the statistic significance of 1% level (Tables 16 and 17). 3. Notwithstanding the fact that the all of the pollen parents are cold tender, all hybrids exhibit cold hardiness as much as their seed parent and it seems to suggest that the characteristics of cold hardiness were transmitted from the seed parent. 4. Though a striking difference in needle length was observed between the parental species of each hybrid, it was difficult to distinguish each hybrid from their seed parent by the needle length except ${\times}$P. rigiserotina which is characterized by long needle which is 65% more longer than the needle of the seed parent (Table 21). 5. With regard to the anatomical characteristics of needle, the hypoderm is apparently thicker in most of the $F_1$ hybrid pines and the characteristics of resin canals are dominated by medial in most $F_1$ hybrid. And, the fibrovascular bundles were apart as were in their seed parent. Therefore it was found to be possible to distinguish the hybrids pines from their parents by the needle characteristics. And, it is to be noticed that the ${\times}$P. densithunbergii was more close to the pollen parent having RDI value of 0.73 (Fig.l, Table 22). 6. It has been demonstrated that ${\times}$P. rigielliottii, ${\times}$P. rigiradiata and ${\times}$P. rigitaeda have a phenolic substance (No.7) of light yellow at Rf-0.46, same as their seed parent, but no trace of phenolic substance was observed in their pollen parent. This fact will serve as an important criteria for early identification of hybridity in progeny testing. However, the fact that both of ${\times}$P. rigiserotina and ${\times}$P. densithunbergii exhibit the same reactions of phenolic substances as well their parental species seems to indicate the close affinities between the parental species of the respective hybrid (Fig.2, Table 23). 7. The separation and the reaction of phenolic substance developed on TLC were found to be same in the same species showing no variations between the individuals, and no variations due to tree part of sampling, tree age or pollen sources. And the reaction was also observed regardless of the not varied by the kind of developing solvent whether it is Aceton-Chloroform (3:7 v/v) or Benzene-Methanol-Acetic acid (90:16:8 v/v). 8. The introgression phenomena of natural Pinus densifiora stand in both east and west coastal area indicates that the major part of the red pines investigated are all heterozygous and the heterozygosity of pines are higher in the west coast than in the east coast(Tables 24 and 25). 9. Based on the RDI, among the plus trees of Pinus densiflora selected in Korea and Japan as well, no pure P. densiflora has been found. Since all of the sample trees of Pinus densiflora were found to be as heterozygous bearing part of the characteristics of P. thunbergii, those red pines were considered to be natural heterotic hybrid pines(Figs. 3 and 4. Tables 26 and 27).

  • PDF

Diagenetic History of the Ordovician Chongson Limestone in the Chongson Area, Kangwon Province, Korea (강원도 정선 지역 오르도비스기 정선석회암의 속성 역사)

  • Bong, Lyon-Sik;Chung, Gong-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.449-468
    • /
    • 2000
  • The Ordovician Chongson Limestone deposited in the carbonate ramp to the rimmed shelf shows diverse diagenetic features. The marine diagenetic feature appears as isopachous cements surrounding ooids and peloids. Meteoric diagenetic features are recrystallized finely and coarsely crystalline calcite, evaporite casts filled with calcite, and isopachous sparry calcite surrounding ooid grains. Shallow burial diagenetic features include wispy seam, microstylolite, and dissolution seam whereas deep burial features include stylolite, burial cements. blocky calcite with twin lamellae, and poikilotopic calcite. Dolomites consist of very finely to finely crystalline mosaic dolomite formed as supratidal dolomite, disseminated dolomite of diverse origin, patchy dolomite formed from bioturbated mottles, and saddle dolomite of burial origin. Silicified features include calcite-replacing quartz and fracture-filling megaquartz. Burial cements characterized by poikilotopic texture show ${\delta}^{18}$O value of -10.4 %$_o$ PDB, ${\delta}^{13}$C value of -1.0%$_o$ PDB and 504ppm Sr, 3643ppm Fe, and 152ppm Mn concentrations. Finely and coarsely crystalline limestones show similar ${\delta}^{18}$O and ${\delta}^{13}$C value to those of burial cements; however, they show lower Sr and higher Fe and Mn concentrations than burial cements. This suggests that very finely and coarsely crystalline limestones were recrystallized in freshwater and then they were readjusted geochemically in the burial setting whereas the burial cements were formed in relatively high temperature and low water/rock ratio conditions. Very finely and finely crystalline mosaic dolomites with ${\delta}^{18}$O value of -8.2%$_o$ PDB, ${\delta}^{13}$C value of -1.9 %$_o$ PDB, and 213ppm Sr, 3654ppm Fe, and 114ppm Mn concentrations, respectively are interpreted to have been formed penecontemporaneously in supratidal flat and then recrystallized in the low water/rock ratio burial environment. Geochemical data suggest that the low water/rock ratio burial environment was the dominant diagenetic setting in the Chongson Limestone. The Chongson Limestone has experienced marine and meteoric diagenesis during early diagenesis. With deposition of Haengmae and Hoedongri formations part of the Chongson Limestone was buried beneath these formations and it experienced shallow burial diagenesis. During the Devonian the Chongson Limestone was tectonically deformed and subaerially exposed. During the Carboniferous to the Permian about 3.3km thick Pyongan Supergroup was deposited on the Chongson Limestone and the Chongson Limestone was in deep burial depths and stylolite, burial cements, blocky calcite and saddle dolomite were formed. After this burial event the Chongson Limestone was subaerially exposed during the Mesozoic and Cenozoic by three periods of tectonic disturbance including Songnim, Daebo and Bulguksa disturbance. Since the Bulguksa disturbance during Cretaceous and early Tertiary the Chongson Limestone has been subaerially exposed.

  • PDF