• Title/Summary/Keyword: 손 제스처 인식

Search Result 131, Processing Time 0.029 seconds

Gesture-based User-Interface Through Hand-region Detection and Hand-movement Recognition (손영역 획득과 손동작 인식에 의한 제스처 기반 사용자 인터페이스의 구현)

  • Ko, Il-Ju;Bae, Young-Lae;Choi, Hyung-Il
    • Korean Journal of Cognitive Science
    • /
    • v.8 no.4
    • /
    • pp.35-53
    • /
    • 1997
  • 본 논문은 컴퓨터 시각을 이용하여 제스처를 인식함으로써 사용자에게 보다 편리한 인터페이스를 제공하는 것을 목표로 한다. 제안하는 제스처 인식 방법은 손영역을 획득하는 손영역 획득 모듈?손영역을 인식하는 인식 모듈로 나누어 수행한다. 손영역 획득 모듈에서는 손색상 모델?손색상 결정함수를 정의하여 칼라영상의 영역 분리를 수행하였고, 칼만필터를 이용하여 손색상 모델을 갱신하고 탐색영역을 제한하여 영역 추적을 용이하게 하였다. 영역 추적은 전 시점의 손영역 정보를 이용하여 현 시점의 손영역을 획득한다. 인식 모듈에서는 정적인 제스처를 표현하는 객체 프레임?행동 프레임, 그리고 동적인 제스처를 표현하는 스키마를 정의한다. 그리고 획득된 손영역?정합을 수행함으로써 제스처를 인식한다. 실험 결갬灌?제안하는 제스처 기반 인터페이스를 적용한 삼목(Tic-Tac-Toe) 게임 프로그램을 구현하였다. 사용자는 제스처를 이용하여 컴퓨터와 게임을 진행한다. 제안하는 시스템은 다른 종류의 게임 프로그램이나 마우스의 역할을 수행하는 윈도우 시스템의 제어, 그리고 가상 현실 시스템에 적용될 수 있다.

  • PDF

Robot Control using Vision based Hand Gesture Recognition (비전기반 손 제스처 인식을 통한 로봇 컨트롤)

  • Kim, Dae-Soo;Kang, Hang-Bong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.197-200
    • /
    • 2007
  • 본 논문에서는 로봇 컨트롤 시스템을 위해 입력 받은 영상부터 몇 가지의 손 제스처를 인식하는 비전기반 손 제스처 인식방법을 제안한다. 로봇으로부터 입력 받은 이미지는 로봇의 위치, 주변환경, 조명 등 여러 요인에 따라 다양하게 존재한다. 본 논문은 다양한 환경에서 입력되는 영상으로부터 시스템이 로봇 컨트롤을 위해 미리 지정한 몇 가지 제스처를 인식하도록 한다. 먼저 이미지 조명 변화에 강한 손 제스처 인식을 위하여 레티넥스 이미지 정규화를 적용한 후, YCrCb 공간 상에서 입력된 영상에서 손 영역을 검출 후 위치를 추정한다. 인식된 손 영역에서 특징벡터를 추출함으로서 입력 영상내의 존재할 수 있는 손의 크기나 손의 회전각도 등에 상관없이 필요로 하는 제스처를 인식하도록 한다. 제안된 제스처 인식 결과는 로봇컨트롤을 위한 기존의 제스처인식과 비교하여 성능을 측정하였다.

CNN-Based Hand Gesture Recognition for Wearable Applications (웨어러블 응용을 위한 CNN 기반 손 제스처 인식)

  • Moon, Hyeonchul;Yang, Anna;Chun, Sungmoon;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.11a
    • /
    • pp.58-59
    • /
    • 2017
  • 손 제스처는 스마트 글라스 등 웨어러블 기기의 NUI(Natural User Interface)를 구현하기 위한 수단으로 주목받고 있다. 최근 손 제스처 인식에서의 인식률 개선을 위하여 다양한 인식기법이 제안되고 있으며, 딥러닝 기반의 손 제스처 인식 기법 또한 활발히 연구되고 있다. 본 눈문에서는 웨어러블 기기에서의 미디어 소비 등 다양한 응용을 위하여 CNN(Convolutional Neural Network) 기반의 손 제스처 인식 기법을 제시한다. 제시된 기법은 스테레오 영상으로부터 깊이 정보와 색 정보를 이용하여 손 윤곽선을 검출하고, 검출된 손 윤곽선 영상을 데이터 셋으로 구성하여 CNN 에 학습을 시킨 후, 이를 바탕으로 손 윤곽선 영상으로부터 제스처를 인식하는 알고리즘을 제안한다.

  • PDF

Real-Time Gesture Recognition Using Boundary of Human Hands from Sequence Images (손의 외곽선 추출에 의한 실시간 제스처 인식)

  • 이인호;박찬종
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.438-442
    • /
    • 1999
  • 제스처 인식은 직관적일 뿐 아니라, 몇 가지의 기본 구성요소에 의하여 코드화(code)가 용이하여, 인간과 컴퓨터의 상호작용(HCI, Human-Computer Interaction)에 있어서 폭넓게 사용되고 있다. 본 논문에서는 손의 모양이나 크기와 같은 개인차 및 조명의 변화나 배율과 같은 입력환경의 영향을 최소화하여, 특별한 초기화 과정이나 모델의 준비과정 없이도 제스처를 인식할 수 있고, 적은 계산량으로 실시간 인식이 가능한 제스처 인식 시스템의 개발을 목표로 한다. 본 논문에서는 손에 부착하는 센서나 마커 없이, CCD 카메라에 의하여 입력된 컬러영상에서, 컬러정보 및 동작정보를 이용하여 손영역을 추출하고, 추출된 손의 경계선 정보를 이용하여 경계선-중심 거리 함수를 생성했다. 그리고, 손가락의 끝 부분에서는 경계선-중심 거리가 극대점을 이룬다는 원리를 이용하여 생성된 함수의 주파수를 분석하여 극대점을 구함으로써 각각의 손가락 끝 위치를 찾고, 손의 자세를 인식하여 제스처를 인식했다. 또한 본 논문에서 제안된 제스처 인식 방법은 PC상에서 구현되어 그 유용성과 실효성이 증명되었다.

  • PDF

An Efficient Hand Gesture Recognition Method using Two-Stream 3D Convolutional Neural Network Structure (이중흐름 3차원 합성곱 신경망 구조를 이용한 효율적인 손 제스처 인식 방법)

  • Choi, Hyeon-Jong;Noh, Dae-Cheol;Kim, Tae-Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.66-74
    • /
    • 2018
  • Recently, there has been active studies on hand gesture recognition to increase immersion and provide user-friendly interaction in a virtual reality environment. However, most studies require specialized sensors or equipment, or show low recognition rates. This paper proposes a hand gesture recognition method using Deep Learning technology without separate sensors or equipment other than camera to recognize static and dynamic hand gestures. First, a series of hand gesture input images are converted into high-frequency images, then each of the hand gestures RGB images and their high-frequency images is learned through the DenseNet three-dimensional Convolutional Neural Network. Experimental results on 6 static hand gestures and 9 dynamic hand gestures showed an average of 92.6% recognition rate and increased 4.6% compared to previous DenseNet. The 3D defense game was implemented to verify the results of our study, and an average speed of 30 ms of gesture recognition was found to be available as a real-time user interface for virtual reality applications.

A Hierarchical Bayesian Network for Real-Time Continuous Hand Gesture Recognition (연속적인 손 제스처의 실시간 인식을 위한 계층적 베이지안 네트워크)

  • Huh, Sung-Ju;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1028-1033
    • /
    • 2009
  • This paper presents a real-time hand gesture recognition approach for controlling a computer. We define hand gestures as continuous hand postures and their movements for easy expression of various gestures and propose a Two-layered Bayesian Network (TBN) to recognize those gestures. The proposed method can compensate an incorrectly recognized hand posture and its location via the preceding and following information. In order to vertify the usefulness of the proposed method, we implemented a Virtual Mouse interface, the gesture-based interface of a physical mouse device. In experiments, the proposed method showed a recognition rate of 94.8% and 88.1% for a simple and cluttered background, respectively. This outperforms the previous HMM-based method, which had results of 92.4% and 83.3%, respectively, under the same conditions.

Natural Hand Detection and Tracking (자연스러운 손 추출 및 추적)

  • Kim, Hye-Jin;Kwak, Keun-Chang;Kim, Do-Hyung;Bae, Kyung-Sook;Yoon, Ho-Sub;Chi, Su-Young
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.148-153
    • /
    • 2006
  • 인간-컴퓨터 상호작용(HCI) 기술은 과거 컴퓨터란 어렵고 소수의 숙련자만이 다루는 것이라는 인식을 바꾸어 놓았다. HCI 는 컴퓨터 사용자인 인간에게 거부감 없이 수용되기 위해 인간과 컴퓨터가 조화를 이루는데 많은 성과를 거두어왔다. 컴퓨터 비전에 기반을 두고 인간과 컴퓨터의 상호작용을 위하여 사용자 의도 및 행위 인식 연구들이 많이 행해져 왔다. 특히 손을 이용한 제스처는 인간과 인간, 인간과 컴퓨터 그리고 최근에 각광받고 있는 인간과 로봇의 상호작용에 중요한 역할을 해오고 있다. 본 논문에서 제안하는 손 추출 및 추적 알고리즘은 비전에 기반한 호출자 인식과 손 추적 알고리즘을 병행한 자연스러운 손 추출 및 추적 알고리즘이다. 인간과 인간 사이의 상호간의 주의집중 방식인 호출 제스처를 인식하여 기반하여 사용자가 인간과 의사소통 하는 것과 마찬가지로 컴퓨터/로봇의 주의집중을 끌도록 하였다. 또한 호출 제스처에 의해서 추출된 손동작을 추적하는 알고리즘을 개발하였다. 호출 제스처는 카메라 앞에 존재할 때 컴퓨터/로봇의 사용자가 자신에게 주의를 끌 수 있는 자연스러운 행동이다. 호출 제스처 인식을 통해 복수의 사람이 존재하는 상황 하에서 또한 원거리에서도 사용자는 자신의 의사를 전달하고자 함을 컴퓨터/로봇에게 알릴 수 있다. 호출 제스처를 이용한 손 추출 방식은 자연스러운 손 추출을 할 수 있도록 한다. 현재까지 알려진 손 추출 방식은 피부색을 이용하고 일정 범위 안에 손이 존재한다는 가정하에 이루어져왔다. 이는 사용자가 제스처를 하기 위해서는 특정 자세로 고정되어 있어야 함을 의미한다. 그러나 호출 제스처를 통해 손을 추출하게 될 경우 서거나 앉거나 심지어 누워있는 상태 등 자연스러운 자세에서 손을 추출할 수 있게 되어 사용자의 불편함을 해소 할 수 있다. 손 추적 알고리즘은 자연스러운 상황에서 획득된 손의 위치 정보를 추적하도록 고안되었다. 제안한 알고리즘은 색깔정보와 모션 정보를 융합하여 손의 위치를 검출한다. 손의 피부색 정보는 신경망으로 다양한 피부색 그룹과 피부색이 아닌 그룹을 학습시켜 얻었다. 손의 모션 정보는 연속 영상에서 프레임간에 일정 수준 이상의 차이를 보이는 영역을 추출하였다. 피부색정보와 모션정보로 융합된 영상에서 블랍 분석을 하고 이를 민쉬프트로 추적하여 손을 추적하였다. 제안된 손 추출 및 추적 방법은 컴퓨터/로봇의 사용자가 인간과 마주하듯 컴퓨터/로봇의 서비스를 받을 수 있도록 하는데 주목적을 두고 있다.

  • PDF

Vision-based 3D Hand Gesture Recognition for Human-Robot Interaction (휴먼-로봇 상호작용을 위한 비전 기반3차원 손 제스처 인식)

  • Roh, Myung-Cheol;Chang, Hye-Min;Kang, Seung-Yeon;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.421-425
    • /
    • 2006
  • 최근 들어서 휴머노이드 로봇을 비롯한 로봇에 대하여 관심이 증대되고 있다. 이에 따라, 외모를 닮은 로봇 뿐 만 아니라, 사람과 상호 작용을 할 수 있는 로봇 기술의 중요성이 부각되고 있다. 이러한 상호 작용을 위한 효율적이고, 가장 자연스러운 방법 중의 하나가 비전을 기반으로 한 제스처 인식이다. 제스처를 인식하는데 있어서 가장 중요한 것은 손의 모양과 움직임을 인식하는3차원 제스처 인식이다. 본 논문에서는 3차원 손 제스처를 인식하기 위하여3차원 손 모델 추정 방법과 명령형 제스처 인식 시스템을 소개하고, 수화, 지화 등으로의 확장성을 위한 프레임워크를 제안한다.

  • PDF

Design and Implementation of a Stereoscopic Image Control System based on User Hand Gesture Recognition (사용자 손 제스처 인식 기반 입체 영상 제어 시스템 설계 및 구현)

  • Song, Bok Deuk;Lee, Seung-Hwan;Choi, HongKyw;Kim, Sung-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.396-402
    • /
    • 2022
  • User interactions are being developed in various forms, and in particular, interactions using human gestures are being actively studied. Among them, hand gesture recognition is used as a human interface in the field of realistic media based on the 3D Hand Model. The use of interfaces based on hand gesture recognition helps users access media media more easily and conveniently. User interaction using hand gesture recognition should be able to view images by applying fast and accurate hand gesture recognition technology without restrictions on the computer environment. This paper developed a fast and accurate user hand gesture recognition algorithm using the open source media pipe framework and machine learning's k-NN (K-Nearest Neighbor). In addition, in order to minimize the restriction of the computer environment, a stereoscopic image control system based on user hand gesture recognition was designed and implemented using a web service environment capable of Internet service and a docker container, a virtual environment.

Gesture Recognition System using Motion Information (움직임 정보를 이용한 제스처 인식 시스템)

  • Han, Young-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.473-478
    • /
    • 2003
  • In this paper, we propose the gesture recognition system using a motion information from extracted hand region in complex background image. First of all, we measure entropy for the difference image between continuous frames. Using a color information that is similar to a skin color in candidate region which has high value, we extract hand region only from background image. On the extracted hand region, we detect a contour using the chain code and recognize hand gesture by applying improved centroidal profile method. In the experimental results for 6 kinds of hand gesture, unlike existing methods, we can stably recognize hand gesture in complex background and illumination changes without marker. Also, it shows the recognition rate with more than 95% for person and 90∼100% for each gesture at 15 frames/second.