Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.1315-1317
/
2022
최근, 심층신경망 기반 오디오 부호화기가 활발히 연구되고 있다. 심층신경망 기반 오디오 부호화기는 기존의 전통적인 오디오 부호화기보다 구조적으로 간단하지만, 네트워크의 복잡도를 증가시키지 않고 인지적 성능향상을 기대하는 것은 어렵다. 이 문제를 해결하기 위하여 인간의 청각적 특성을 활용한 심리음향모델 기반 손실함수를 사용한 기법들이 소개되었다. 심리음향 모델 기반 손실함수를 사용한 오디오 부호화기는 양자화 잡음을 잘 제어하였지만, 여전히 지각적인 향상이 필요하다. 본 논문에서는 심층신경망 기반 오디오 부호화기를 위한 Multi-time Scale 손실함수의 지역 손실함수 윈도우 크기의 최적화 제안한다. Multi-time Scale 손실함수의 지역 손실함수 계산을 위한 윈도우 크기를 조절하며, 이를 통하여 오디오 부호화에 적합한 윈도우 사이즈를 결정한다. 실험을 통해 얻은 최적의 Multi-time Scale 손실함수를 사용하여 네트워크를 훈련하였고, 주관적 평가를 통해 기존의 심리음향모델 기반 손실함수보다 좋은 음성 품질을 보여주는 것을 확인하였다.
Speech enhancement is performed to improve intelligibility and quality of the noise-corrupted speech. In this paper, speech enhancement performance was compared using different loss functions in time and frequency domains. This study proposes a combination of loss functions to utilize advantage of each domain by considering both the details of spectrum and the speech waveform. In our study, Scale Invariant-Source to Noise Ratio (SI-SNR) is used for the time domain loss function, and Mean Squared Error (MSE) is used for the frequency domain, which is calculated over the complex-valued spectrum and magnitude spectrum. The phase loss is obtained using the sin function. Speech enhancement result is evaluated using Source-to-Distortion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ), and Short-Time Objective Intelligibility (STOI). In order to confirm the result of speech enhancement, resulting spectrograms are also compared. The experimental results over the TIMIT database show the highest performance when using combination of SI-SNR and magnitude loss functions.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.49-49
/
2021
홍수 발생 시 제내지에 존재하는 도로 및 상·하수도시설물은 저지대를 중심으로 생성되는 침수지역이 아닌 대부분 집중호우, 태풍으로 인해 발생한 유출량이 지표면 유출로 이어져 지면 경사를 따라 유하하면서 흐름을 방해하거나 노후된 시설물 등에서 피해가 발생한다. 이러한 피해발생 특성을 고려하여 홍수피해액을 추정하기에는 침수면적과 시설물 현황 등을 활용하는 기존의 손실 함수 개발 방법으로는 부족한 부분이 존재하며, 유수 흐름의 주요 인자인 침수심, 유속 등과 같은 수리특성을 고려하여 시설물에 대한 홍수피해액을 추정하는 방안이 필요하다. 본 연구에서는 수리특성을 고려한 시설물의 홍수피해액을 추정하기 위한 손실함수를 개발하고자 국가재난정보관리시스템(NDMS) DB에서 해당 시설물의 상세주소를 이용하여 피해 발생위치와 피해액을 파악하였으며, 2차원 수리해석 모형인 FLO-2D를 활용하여 시설물의 피해위치에서 발생된 수리특성 인자인 침수심과 유속을 분석하였다. 시설물의 단위면적 당 피해액을 종속변수로, 분석된 평균 침수심과 평균 유속을 독립변수로 선정한 후 변수 자료들의 신뢰성과 함수의 설명력을 향상시키기 위하여 이상자료들을 제거한 후 손실함수를 개발하였다. 본 연구에서 개발된 손실함수는 수리특성 인자인 침수심과 유속에 의하여 홍수피해액을 직접적으로 추정하는 방법으로 향후 홍수재해에 대한 사전 재산피해 추정을 통하여 합리적인 선제적 예방조치 등의 홍수재해 예방 활동 등에 활용될 수 있을 것으로 기대한다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.93-97
/
2020
본 연구는 딥 러닝 기반 의존 구문 분석에서, 학습에 적용하는 손실 함수에 따른 성능을 평가하였다. Pointer Network를 이용한 Left-To-Right 모델을 총 세 가지의 손실 함수(Maximize Golden Probability, Cross Entropy, Local Hinge)를 이용하여 학습시켰다. 그 결과 LH 손실 함수로 학습한 모델이 선행 연구와 같이 MGP 손실 함수로 학습한 것에 비해 UAS/LAS가 각각 0.86%p/0.87%p 상승하였으며, 특히 의존 거리가 먼 경우에 대하여 분석 성능이 크게 향상됨을 확인하였다. 딥러닝 의존 구문 분석기를 구현할 때 학습모델과 입력 표상뿐만 아니라 손실 함수 역시 중요하게 고려되어야 함을 보였다.
Kim, Sang Ho;Hwang, Shin Bum;Kim, Yeon Su;Hee, Chang
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.122-122
/
2017
재해로부터 국민의 인명과 재산을 보호하기 위해서는 재해 발생의 빈도 증가와 대형화 추세에 따라 예상되어지는 피해규모의 분석과 예측을 통한 대책 마련이 필요하다. 한국의 경우 피해지역 조사를 통하여 획득한 피해일시, 피해시설물, 피해내역, 피해액과 같은 피해액 정보를 관리하는 국가재난관리시스템(National Disaster Management System, NDMS)이 운영되고 있다. 그러나 공공시설물 중 가장 많은 피해액을 나타내고 있는 하천시설물에 대한 피해규모의 예측에 대한 연구는 전무한 실정이다. 본 연구에서는 국가재난관리시스템의 과거 하천 피해정보를 이용하여 하천의 구간별 평균유속과 피해연장으로부터 하천의 피해액을 추정할 수 있는 하천 손실함수를 개발하였으며, 시범 대상지역에 적용하여 검증하였다. 하천 손실함수는 향후 피해액 추정에 따른 피해규모 분석을 통하여 재해저감대책을 마련하는데 필요한 유용한 정보로 활용될 수 있을 것이다.
Proceedings of the Korea Information Processing Society Conference
/
2019.10a
/
pp.942-945
/
2019
현재 딥러닝은 컴퓨터 분야에서 이미지 처리 방법으로 활용도가 높아지면서 딥러닝 모델 개발 연구가 활발히 진행되고 있다. 딥러닝 모델 중에서 이미지 생성모델은 대표적으로 GAN(Generative Adversarial Network, 생성적 적대 신경망) 모델을 활용하고 있다. GAN은 생성기 네트워크와 판별기 네트워크를 이용하여 진짜 같은 이미지를 생성한다. 생성된 이미지는 실제 이미지와의 오차를 최소화해야 하며 이때 사용하는 함수를 손실함수라고 한다. GAN에서 손실함수는 이미지를 생성하는 학습이 불안정하여 이미지 품질이 떨어지는 문제가 있다. 개선된 GAN 관련 연구가 진행되고 있지만 완전한 문제 해결에는 부족하다. 본 논문은 7개의 GAN 모델에서 사용하는 손실함수를 분류하고 특징을 분석한다.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.25-25
/
2019
자연재해에 따른 피해로부터 국민의 재산과 인명 등을 보호하기 위해서는 예상되는 재해로부터 발생하는 피해규모에 대한 분석과 예측을 통한 대책 마련이 필요하다. 본 연구에서는 최근 10년간 발생되어진 자연재해 원인과 시설물별 분류 결과를 통하여 가장 많은 피해가 발생되어진 호우 태풍에 따른 공공시설물 피해에 대한 피해규모를 예측할 수 있는 손상 손실함수를 개발하고자 하였다. 공공시설물 중에서도 제외지에서 대부분의 피해가 발생하는 하천시설물 외에 국민의 생활영역인 제내지에서 피해규모가 크게 발생하였으며, 국가재난관리시스템(NDMS)의 피해내역 시설물 분류가 명확한 도로 시설물과 상 하수도 시설물을 함수 개발 대상물로 선정하였다. 도로와 상 하수도 시설물에 대한 국가재난관리시스템(NDMS)의 과거 피해내역과 호우 태풍에 의한 피해발생 규모로서 일반적으로 활용되고 있는 침수예상도 범람도 등을 활용하기 위하여 피해액을 종속변수로 침수면적을 독립변수로 이용하여 도로와 상 하수도 시설물의 피해액을 추정할 수 있는 손실함수를 개발하였다. 개발되어진 도로 시설물 및 상 하수도 시설물에 대한 손실함수는 향후 재해에 따라 발생 가능한 추정 피해액 규모 분석 등을 통하여 재해저감 대책을 위한 기초자료로 활용될 것으로 기대한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.72-74
/
2021
The deep learning process currently utilized in various fields consists of data preparation, data preprocessing, model generation, model learning, and model evaluation. In the process of model learning, the loss function compares the value of the model with the actual value and outputs the difference. In this paper, we analyze various loss functions used in the deep learning model for biomarker extraction, which measure the degree of loss of neural network output values, and try to find the best loss function through experiments.
This paper evaluates and compares the performance of the Deep Nerual Network (DNN)-based speech enhancement models according to various loss functions. We used a complex network that can consider the phase information of speech as a baseline model. As the loss function, we consider two types of basic loss functions; the Mean Squared Error (MSE) and the Scale-Invariant Source-to-Noise Ratio (SI-SNR), and two types of perceptual-based loss functions, including the Perceptual Metric for Speech Quality Evaluation (PMSQE) and the Log Mel Spectra (LMS). The performance comparison was performed through objective evaluation and listening tests with outputs obtained using various combinations of the loss functions. Test results show that when a perceptual-based loss function was combined with MSE or SI-SNR, the overall performance is improved, and the perceptual-based loss functions, even exhibiting lower objective scores showed better performance in the listening test.
Deep neural networks are an approximation method that approximates an arbitrary function to a linear model and then repeats additional approximation using a nonlinear active function. In this process, the method of evaluating the performance of approximation uses the loss function. Existing in-depth learning methods implement approximation that takes into account loss functions in the linear approximation process, but non-linear approximation phases that use active functions use non-linear transformation that is not related to reduction of loss functions of loss. This study proposes parametric activation functions that introduce scale parameters that can change the scale of activation functions and location parameters that can change the location of activation functions. By introducing parametric activation functions based on scale and location parameters, the performance of nonlinear approximation using activation functions can be improved. The scale and location parameters in each hidden layer can improve the performance of the deep neural network by determining parameters that minimize the loss function value through the learning process using the primary differential coefficient of the loss function for the parameters in the backpropagation. Through MNIST classification problems and XOR problems, parametric activation functions have been found to have superior performance over existing activation functions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.