• Title/Summary/Keyword: 손실계산식

Search Result 124, Processing Time 0.024 seconds

Generation of blast load time series under tunnelling (터널 굴착 발파하중 시간이력 생성)

  • Ahn, Jae-Kwang;Park, Duhee;Shin, Young-Wan;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.51-61
    • /
    • 2014
  • It is necessary to perform a dynamic analysis to numerically evaluate the effect of blasting on nearby facilities. The blast load time history, which cannot be directly measured, is most often determined from empirical equation. The load has to be adjusted to account for various factors influencing the load and the frequency, but there is not a clear guideline on how to adjust the load. In this study, a series of 2D dynamic numerical analyses that simulates a closely monitored test blasting is performed, from which the blast load that matches the measured vibrations are derived. In the analyses, it is assumed that the hole generated by the blasting is in the form of a circle, and the load was applied normally to the wall of the opening. Special attention was given in selecting the damping ratio for the ground, since it has important influence on the wave propagation and attenuation characteristics of the blast induce waves. The damping ratio was selected such that it matches favorably with the attenuation curve of the measurement. The analyses demonstrate that the empirical blast load widely used in practice highly overstimates the vibration since it does not account for the energy loss due to rock fragmentation. If the empirical load is used without proper adjustment, the numerical analysis may seriously overstimate the predicted vibration, and thus has to be reduced in the analysis.

Estimation of the Kinetic Energy of Raindrops for Hourly Rainfall Considering the Rainfall Particle Distribution (강우입자분포를 고려한 시강우의 강우에너지 산정 연구)

  • Kim, Seongwon;Jeong, Anchul;Lee, Giha;Jung, Kwansue
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.15-23
    • /
    • 2018
  • The occurrence of soil erosions in Korea is mostly driven by flowing water which has a close relationship with rainfalls. The soil eroded by rainfalls flows into and deposits in the river and it polluted the water resources and making the rivers become difficult to be managed. Recently, the frequency of heavy rainfall events that are more than 30 mm/hr has been increasing in Korea due to the influence of climate change, which creating a favourable condition for the occurrence of soil erosion within a short time. In this study, we proposed a method to estimate the distribution of rainfall intensity and to calculate the energy produced by a single rainfall event using the cumulative distribution function that take into account of the physical characteristics of rainfall. The raindrops kinetic energy estimated by the proposed method are compared with the measured data from the previous studies and it is noticed that the raindrops kinetic energy estimated by the rainfall intensity variation is very similar to the results concluded from the previous studies. In order to develop an equation for estimating rainfall kinetic energy, rainfall particle size data measured at a rainfall intensity of 0.254~152.4 mm/hr were used. The rainfall kinetic energy estimated by applying the cumulative distribution function tended to increase in the form of a power function in the relation of rainfall intensity. Based on the equation obtained from this relationship, the rainfall kinetic energy of 1~80 mm/hr rainfall intensity was estimated to be $0.03{\sim}48.26Jm^{-2}mm^{-1}$. Based on the relationship between rainfall intensity and rainfall energy, rainfall kinetic energy equation is proposed as a power function form and it is expected that it can be used in the design of short-term operated facility such as the sizing of sedimentation basin that requires prediction of soil loss by a single rainfall event.

Evaluation of Heating Performance and Analysis of Heating Loads in Single Span Plastic Greenhouses with an Electrical or Hot-Air Heating (전기히터식 난방, 온풍난방시스템을 채용한 단동 플라스틱 하우스의 열부하 해석 및 난방성능 평가)

  • 허종철;임종환;서효덕;최동호
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.136-146
    • /
    • 1999
  • A series of experiments were carried out in winter to investigate the indoor thermal environment in greenhouses with different kinds of heating systems, and characterize the energy consumption, heat transport and thermal energy efficiency of each system. By the Quantitative calculation of heat losses which transmit through the covers of greenhouse, the fundamental data of energy-saving of the particular heating system were obtained. And from the analysis of air temperature differences between indoor and outside, it was possible to select more effective energy-saving and comfortable heating system in greenhouses. The electric heater was more stable in thermal environment and cheaper in cost, since it could be used during the surplus time of electric power from 10:00 p.M. to 8:00 A.M. But the low air temperature in greenhouses besides these times resulted in a chilling problem of the crops. The heating system by hot air had the advantage to show nearly uniform temperature difference by the height above the ground. But the system had the disadvantage to require more energy consumption than the electric heating system.

  • PDF

Computational and Experimental Investigation of Thermal Flow Field of Micro Turbojet Engine with Various Nozzle Configurations (노즐 형상 변경에 따른 마이크로 터보제트 엔진의 열유동장에 관한 전산해석 및 실험적 연구)

  • Lee, Hyun-Jin;Lee, Ji-Hyun;Myong, Rho-Shin;Kim, Sun-Mi;Choi, Sung-Man;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.150-158
    • /
    • 2018
  • Numerical simulation and experimental study on the thermal flow field of the micro turbojet engine have been carried out for the purpose of developing infrared reduction technology for aircraft. A circular basic nozzle and five rectangular nozzles with different aspect ratio were considered. The conditions for CFD analysis were derived from the analysis of the engine performance. The temperature distribution of the nozzle plume was measured using a temperature sensing system. The thrust of the rectangular nozzle with the aspect ratio 5 was reduced about 1.8% compared to the circular nozzle, and the thrust decreased with increasing the aspect ratio of the nozzle. In the case of thermal flow field, it was observed that, as the aspect ratio increases, the exhaust plume in the experiment was formed wider than in the CFD analysis.

A Numerical Study on the Efficiency of an Industrial Furnace for Oxygen Combustion Conditions (산소부화용 공업로의 운전조건이 열효율에 미치는 영향)

  • Kim, Kang-Min;Lee, Yeon-Kyung;Ahn, Seok-Gi;Kim, Gyu-Bo;Yoo, In;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.82-88
    • /
    • 2015
  • After a reheating furnace installation, the modification of the size and the heat capacity is very difficult. Therefore, the development of design package tool is required for the computation on the correct specifications before the design and the installation. Prior to development of the design tool, a module that calculates the amount of heat loss of each part according to the specifications for determining the thermal efficiency of a continuous heating furnace was developed and applied to the oxy-fuel industrial furnace. Through this, the effects of fuel type, oxygen fraction and recirculation on the efficiency of the furnace of which the output is 110Ton/hour were analyzed. In oxy-fuel combustion condition, the efficiency was 15% higher than air combustion conditions. With the using COG(Coke Oven Gas) instead of LNG, the efficiency was slightly increased. In the air combustion condition, the efficiency was increased about 33% with the preheated air. But, in oxy-fuel condition, the amount of exhaust gas was reduced, so the efficiency was increased about 7%.

Operation analysis and application of modified slope-area method for the estimation of discharge in multi-function weir (다기능보의 방류량 산정 개선을 위한 운영 분석 및 수정 경사-면적법의 적용)

  • Oh, Ji-Hwan;Jang, Suk-Hwan;Oh, Kyoung-Doo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.687-701
    • /
    • 2018
  • A multi-function weir is representative control structure in the stream flow. Estimation of accurate flood discharge according to gate operations and prediction of floodwave travel times at the downstream are very important in terms of water use and river management. This study analyzed the limitation and improvement through the current gate operation data on the Young-san river. in addition, flood discharge was calculated considering lower and upper water level condition and gate operating using the modified slope-area method in the Seoung-chon weir. As a result, the current state was required improvement because exceed the theoretical range and rapidly fluctuation of discharge coefficient, can not be considered difference between the upper and lower water level and the estimation by the regression equation. As a result of applying the proposed method in this study, the above mentioned limitations can be compensated, compared with the current discharge data. Also it was analyzed as more physically valid because using the evaluated hydraulic equation and estimate the slope and friction loss of natural stream by iteration and to reduce the error. In conclusion, the process carried out serves as a representative flow control point of the water system through reliable discharge estimation, it is expected that it will be possible to properly river management.

Estimation of Overall Heat Transfer Coefficient for Single Layer Covering in Greenhouse (일중 피복온실의 관류열전달계수 산정)

  • Hwang, Young-Yun;Lee, Jong-Won;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.108-115
    • /
    • 2013
  • This study was conducted to suggest a model to calculate the overall heat transfer coefficient of single layer covering for various greenhouse conditions. There was a strong correlation between cover surface temperature and inside air temperature of greenhouse. The equations to calculate the convective and radiative heat transfer coefficients proposed by Kittas were best fitted for calculation of the overall heat transfer coefficient. Because the coefficient of linear regression between the calculated and measured cover surface temperature was founded to 0.98, the slope of the straight line is 1.009 and the intercept is 0.001, the calculation model of overall heat transfer coefficient proposed by this study is acceptable. The convective heat transfer between the inner cover surface and the inside air was greater than the radiative heat transfer, and the difference increased as the wind speed rose. The convective heat transfer between the outer cover surface and the outside air was less than the radiative heat transfer for the low wind speed, but greater than for the high wind speed. The outer cover convective heat flux increased proportion to the inner cover convective heat flux linearly. The overall heat transfer coefficient increased but the cover surface temperature decreased as the wind speed increased, and the regression function was founded to be logarithmic and power function, respectively.

Tunneling-induced Building Damage Risk Assessment System (터널굴착에 따른 인접건물 손상위험도 평가시스템)

  • Park, Yong-Won;Yoon, Hyo-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.51-59
    • /
    • 2002
  • This paper deals with development of a damage risk assessment system for adjacent buildings to under-passing tunnel face considering 3D-ground movement. The system consists of building and ground information module, monitoring data module, settlement evaluation module, and building damage risk assessment module. The major modules, settlement evaluation module and building damage assessment module, are based on settlement estimation model suggested by Attewell et al (1982) and the building damage assessment method by Mair et al. (1996). After estimating 3D-ground movements due to tunneling with settlement evaluation module, damage assessment far buildings is performed using building damage risk assessment module. The developed system has two major functions; 1) calculation of 3D-settlement with ground loss ($V_{s}$)or maximum settlement ($w_{max}$) and inflection point (i) using various empirical formulae, monitoring data, numerical results, and so on; 2) assessment of damage risk for adjacent buildings of arbitrary section with position change of tunnel face. The field data given by Boscadin and Cording (1989) leer the case of two-storied masonry building near the Metro tunnel in Washington D.C. was simulated to verify the applicability of the developed system.

Development and Application of Siphon Breaker Simulation Program (사이펀 차단기 시뮬레이션 프로그램의 개발 및 활용)

  • Lee, Kwon-Yeong;Kim, Wan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.346-353
    • /
    • 2016
  • In the design conditions of some research reactors, the siphon phenomenon can cause continuous efflux of water during pipe rupture. A siphon breaker is a safety device that can prevent water efflux effectively. However, the analysis of the siphon breaking is complicated because many variables must be included in the calculation process. For this reason, a simulation program was developed with a user-friendly GUI to analyze the siphon breaking easily. The program was developed by MFC programming using Visual Studio 2012 in Windows 8. After saving the input parameters from a user, the program proceeds with three steps of calculation using fluid mechanics formulas. Bernoulli's equation is used to calculate the velocity, quantity, water level, undershooting, pressure, loss coefficient, and factors related to the two-phase flow. The Chisholm model is used to predict the results from a real-scale experiment. The simulation results are shown in a graph, through which a user can examine the total breaking situation. It is also possible to save all of the resulting data. The program allows a user to easily confirm the status of the siphon breaking and would be helpful in the design of siphon breakers.

Comparison of Runoff Models for Small River Basins (소하천 유역에서의 유출해석모형 비교)

  • 강인식
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.209-221
    • /
    • 1996
  • It may be difficult to make exact estimates of peak discharge or runoff depth of a flood and to establish the proper measurement for the flood protection since water stages or discharges have been rarely measured at small river basins in Korea. Three small catchments in the Su-Young river basin in Pusan were selected for the study areas. Various runoff parameters for the study areas were determined, and runoff analyses were performed using three different runoff models available in literatures; the storage function method, the discrete, linear, input-output model, and the linear reservoir model. The hydrographs calculated by three different methods showed good agreement with the observed flood hydrographs, indicating that the models selected are all capable of sucessfully modeling the flood events for small watersheds. The storage function method gave the best results in spite of its weakness that it could not be applicable to small floods, while the linear reservoir model was found to provide relatively good results with less parameters. The capabilities of simulating flood hydrographs were also evaluated based on the effective rainfall from the storage function parameters, the $\Phi$-index method, and the constant percentage method. For the On-Cheon stream watershed, the storage function parameters provided better estimates of effective rainfall for regenerating flood hydrographs than any others considered in the study. The $\Phi$-index method, however, resulted in better estimates of effective rainfall for the other two study areas.

  • PDF