• Title/Summary/Keyword: 손상 검출

Search Result 429, Processing Time 0.022 seconds

A Vibration Rejection of Linear Feeder System with PMSM using Adaptive Notch Filter (적응형 노치 필터에 의한 PMSM을 이용한 선형 피드 시스템의 진동 억제)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.274-283
    • /
    • 2006
  • The Permanent Magnet Synchronous Motor(PMSM) drive systems with ball-screw, gear and timing-belt are widely used in industrial applications such as NC machine, machine tools, robots and factory automation. These systems have torsional vibration in torque transmission from servo motor to mechanical load due to the mechanical couplings. This vibration makes it difficult to achieve quick responses of speed and may result in damage to the mechanical plant. This paper presents adaptive notch filter with auto searching function of vibration frequency to reject the mechanical vibration of linear feeder system with PMSM. The proposed adaptive notch filter can suppress the torque command signal of PMSM in the resonant bandwidth for reject the mechanical torsional vibration. However, the resonant frequency can vary with conditions of mechanical load system and coupling devices, adaptive notch filter can auto search the vibration frequency and suppress the vibration signal bandwidth. Computer simulation and experimental results shows the verification of the proposed adaptive notch filter in linear feeder system with PMSM.

Health Monitoring in Composite Structures using Piezoceramic and fiber Optic Sensors (압전세라믹 센서와 광섬유 센서를 이용한 복합재 구조물의 건전성 모니터링)

  • Kim, C.G.;Sung, D.U.;Kim, D.H.;Bang, H.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.445-454
    • /
    • 2003
  • Health monitoring is a major concern not only in the design and manufacturing but also in service stages for composite laminated structures. Excessive loads or low velocity impact can cause matrix cracks and delaminations that may severely degrade the load carrying capability of the composite laminated structures. To develop the health monitoring techniques providing on-line diagnostics of smart composite structures can be helpful in keeping the composite structures sound during their service. In this study, we discuss the signal processing techniques and some applications for health monitoring of composite structures using piezoceramic sensors and fiber optic sensors.

A Ground Penetrating Radar Detection of Buried Cavities and Pipes and Development of an Image Processing Program (지반 공동 및 매립관의 지반 투과 레이더 탐사 및 이미지 처리 프로그램 개발)

  • Lee, Hyun-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.177-184
    • /
    • 2017
  • Many ground subsidence accidents have happened in Korea. The accident was caused by the subsidence and leakage of the deteriorated sewage pipe. This study aims to establish the empirical data of the ground penetration radar(GPR) detection for ground subsidence. A test bed was also manufactured for the same purpose. The GPR detection variables are embedment depth and horizontal distance of embedded cast iron pipe and expanded polystyrene(EPS). From the detection results, the EPS embedded by a depth of 1.5m was difficult for detection. The EPS closely embedded to the cast iron pipe within a 0.5m distance had a very strong cast iron pipe signal. Therefore, the detection was impossible. This study developed an image processing program, called the GPR image processing program(GPRiPP), to process the GPR detection results. Its major function is the gain function, which amplifies the wiggle wave signal. Compared to the existing programs, the GPRiPP is capable of showing a similar image processing performance.

Seam Carving based Occlusion Region Compensation Algorithm (심카빙 기반 가려짐 영역 보상 기법)

  • An, Jae-Woo;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.16 no.4
    • /
    • pp.573-583
    • /
    • 2011
  • In this paper, we propose an occlusion compensation algorithm which is used for virtual view generation. In general, since occlusion region is recovered from neighboring pixels by taking the mean value or median value of neighbor pixels, the visual characteristics of a given image are not considered and consequently the accuracy of the compensated occlusion regions is not guaranteed. To solve these problem, we propose an algorithm that considers primary visual characteristics of a given image to compensate the occluded regions by using seam carving algorithm. In the proposed algorithm, we first use Sobel mask to obtain the edge map of a given image and then make it binary digit 0 or 1 and finally thinning process follows. Then, the energy patterns of original and thinned edge map obtained by the modified seam carving method are used to compensate the occlusion regions. Through experiments with many test images, we verify that the proposed algorithm performed better than conventional algorithms.

Acoustic Emission from Fatigue Crack Extension in Corroded Aluminum Alloys (부식된 알루미늄 합금의 피로균열진전에서 얻어진 음향방출)

  • Nam Kiwoo;Lee Jonnrark
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • The main objective of this study is to determine if the sources of AE in corroded specimens of aluminum could be identified iron the characteristics of the waveform signals recorded during fatigue loading. Coupons of notched 2024-T3 aluminum with or without corrosion (at the notch) were subjected to fatigue loading and the AE signals were recorded using non-resonant, flat, wide-band transducers. The time history and power spectrum of each individual wave signal recorded during fatigue crack growth were examined and classified according to their special characteristics. Five distinct types of signals were observed regardless of specimen condition. The waveform and power spectra were shown to be dependent on specimen condition. During the initial phase of crack growth, the signals obtained in the as-received specimens are most probably due to transgranular cleavage caused by extrusion and intrusion under fatigue loading. In the corroded specimen the signal are probably generated by intergranular cleavage due to embrittlement of grain boundary neat the pitting tip. The need for additional research to further validate these findings is indicated.

  • PDF

Corrosion properties of the 6/4 forged brass for the coupler transferring LPG between tank lorry and LPG station (LPG 충전소와 탱크로리의 가스 이$\cdot$충전 접속장치 커플러용 6/4 단조 황동의 부식특성에 관한 연구)

  • Kil Seong-Hee;Kwon Jeung-Rock;Kim Ji-Yuon;Doh Jung Man
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.14-21
    • /
    • 2001
  • In order to investigate the damage mechanism of the coupler transferring LPG, microstructural observation and chemical analysis of the couplers operated for the long time in the LPG stations and virgin 6/4 forged-brass corrosion-tested were conducted. Their microstructure was consisted of two phases that bright $\beta$ precipitates were irregularly dispersed in $\alpha$ matrix. The chemical compositions of oxide layer on the surface of the used coupler were composed of S, C, O, Al, Si, etc. as well as Cu and Zn. In environmental corrosion tests of both $10\%$ HCl and Mattsson solutions, no apparent deviations in mechanical impact strength of forged-brass was observed. While, in U-bend stress corrosion cracking specimen, some microcracks were observed.

  • PDF

Insertion Path Extraction of Catheter for Coronary Angiography (관상동맥 조영술을 위한 카테터 삽입 경로 추출)

  • Kim, Sung-Hu;Lee, Ju-Won;Kim, Joo-Ho;Lee, Han-Wook;Jung, Won-Geun;Lee, Gun-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.951-956
    • /
    • 2011
  • Coronary angiography technology is usually used for examining or treating coronary artery stenosis. Especially, when a cardiologist inserts catheter into the heart blood vessel, the catheter path detection system is needed because the cardiologist has difficulty in not damaging vessel. Recently, to reduce this difficulty, many searchers have been working for the various image processing technologies, such as vessel edge detection, optimal threshold method, etc. However the results of these searches are showing different performances depend on the contrast and quality of images. Therefore, this study for the coronary angiography suggests a novel algorithm to avoid these problems. The suggested algorithm consists of multi-sampling, interpolation, threshold method, and fault points elimination. To evaluate the performance of the proposed method, we used several angiographic images in experimentation, and we found that the proposed method is effective for detecting the catheter insertion path.

Development of Fracture Toughness Evaluation Method for Composite Materials by Non-Destructive Testing Method (비파괴검사법을 이용한 복합재료의 파괴인성 평가법 개발)

  • Lee, Y.T.;Kim, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.278-291
    • /
    • 1998
  • Fracture process of continuous fiber reinforced composites is very complex because various fracture mechanisms such as matrix cracking, debonding, delamination and fiber breaking occur simultaneously during crack growth. If fibers cause crack bridging during crack growth, the stable crack growth and unstable crack growth appear repeatedly. Therefore, it is very difficult to exactly determine tile starting point of crack growth and the fracture toughness at the critical crack length in composites. In this research, fracture toughness test for CFRP was accomplished by using acoustic emission(AE) and recording of tile fracture process in real time by video-microscope. The starting point of crack growth, pop-in point and the point of unstable crack growth can be exactly determined. Each fracture mechanism can be classified by analyzing the fracture process through AE and video-microscope. The more reliable method ior the fracture toughness measurement of composite materials was proposed by using the combination of R-curve method, AE and video microscope.

  • PDF

Numerical Analysis of Scattered Fields of Ultrasonic SH-Wave by Multi-Defects (재료내 다중결함에 의한 SH형 초음파 산란장의 수치해석)

  • Lee, Joon-Hyun;Lee, Seo-Il;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.304-312
    • /
    • 1998
  • In order to assure the reliability and integrity of structures such as bridges, Power and petrochemical plants, nondestructive evaluation techniques are recently playing more important roles. Among the various kinds of nondestructive evaluation techniques, ultrasonic technique is one of the most widely used methods for nondestructive inspection of internal defects in structures. For the reliable quantitative evaluation of internal defects from the experimental ultrasonic signals, a numerical analysis of ultrasonic scattering field due to a defect distribution is absolutely required. In this paper, the SH-wave scattering by multi-cavity defects using elastodynamic boundary element method is studied. The effects of shape of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in 50-wave scattering is also investigated. Numerical calculation by the boundary element method has been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results would be useful to improve the sensitivity of flaw defection for inverse analysis and pursue quantitative nondestructive evaluation for inverse problem.

  • PDF

Pigment Analysis and Nondestructive Deterioration Diagnosis of the Wall Paintings in Gwanyongsayaksajeon (Yaksajeon Hall of Gwanyongsa Temple), Changnyeong, Korea (창녕 관룡사 약사전 벽화의 안료분석 및 비파괴 훼손도 진단)

  • Chun, Yu-Gun;Kim, Won-Kuk;Jo, Young-Hoon;Han, Doo-Roo;Kim, Sun-Duk;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.25 no.4
    • /
    • pp.383-398
    • /
    • 2009
  • We have investigated chemical properties of the pigments and carried out the deterioration diagnosis using nondestructive techniques of the wall painting in Yaksajeon Hall of Gwanyongsa Temple. As the results of pigments analysis, it was unusual that the cobalt was detected in the blue and green colors used to traditional paint background. According to the deterioration diagnosis, ultrasonic measurement and infrared thermography, dominant cracks and exfoliation caused by high content of moisture. Therefore, it should be devised effective plan to prevent penetration of water for the long term this wall painting.

  • PDF