• Title/Summary/Keyword: 손상탐지기법

Search Result 103, Processing Time 0.029 seconds

Damage Detection in Truss Structures using Anti-Optimization (역 최적화 방법을 이용한 트러스 구조물의 손상탐지)

  • Lee, Seung Hye;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.441-449
    • /
    • 2013
  • Damaged structures change the value of natural properties. The purpose of this study is to detect damage using the difference of natural properties between the healthy state and the damaged state. Anti-optimization method is used to find the conditions that maximize the difference in characteristics between the two contrasting models. In this paper, a algorithm for finding the loading conditions which can maximize the difference of strain energy between the healthy state and the damaged state of truss structures is developed. Numerical examples show that the proposed method is accurate and efficient for truss structures.

Damage Detection in Floating Structure Using Static Strain Data (정적 변형률을 이용한 플로팅 구조물의 손상탐지)

  • Park, Soo-Yong;Jeon, Yong-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.163-168
    • /
    • 2012
  • Recently, people's desire for the waterfront space has been increasing, and more people want to spend their leisure time close to the water. This paper proposes a damage detection technique using the static strain for the floating structure. An existing damage index, in which the modal strain energy was utilized to identify possible location of damage, is expanded to apply the static strain. The new damage index is expressed in terms of the static strains of undamaged and damaged structures. After calculating damage index, the possible damage locations in the structure are determined by the pattern recognition technique. The accuracy and feasibility of the proposed method is demonstrated by using experimental strain data from a scale model of floating structure.

A Guided Wave-Based Structural Damage Detection Method for Structural Health Monitoring (구조물의 건전성 모니터링을 위한 유도초음파 응용 구조손상 탐지기법)

  • Go, Han-Suk;Lee, U-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.412-419
    • /
    • 2009
  • How to efficiently and accurately detect the damages generated in a structure has become an important issue for structural health monitoring (SHM). Most existing SHM techniques require the baseline data which should be measured before a structure get damaged. Thus, this paper presents a new pitch-catch method-based SHM technique which will not require the baseline data any more. In the proposed SHM technique, the imaging method is also utilized to visualize damage locations. The proposed SHM technique is then validated through the damage detection texts for damaged aluminum plates.

Damage Detection of a Frame Structure Using Finite Element Model Updating (유한요소모델개선기법을 이용한 골조구조물의 손상탐지)

  • Yu, Eun-Jong;Kim, Seung-Nam;Lee, Hyun-Kook;Choi, Hang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.445-452
    • /
    • 2009
  • In this paper, damage detection procedure using the finite element model updating was formulated and applied to a small-scale frame structure. FE model updating is the analytical method which finds the mathematical model that generates the measured dynamic properties similarly, and can be effectively used for the damage detection and SHM. For model updating, several kinds of dynamic properties, such as the natural frequencies, mode shapes, and frequency response functions, can be used as the inputs. In this paper, two kinds of model updating procedures using the natrual frequency and the frequency response function, and the natrual frequency and the mode shapes, respectively, were applied to identify the location and the severity of damage of the test structure, which is a four-story two bay steel structure. Results from the damage detection showed that more accurate identification results was obtained when the natrual frequency and the frequency response function were used than when the natrual frequency and the mode shapes were used.

Detection of Damage at the Ends of Members using Finite Model Updating and Semi Rigid Connection Model (모델개선기법과 반강접 접합부 모델을 이용한 부재단부 손상탐지)

  • Yu, Eun-Jong;Kim, Seung-Nam;Lee, Hyun-Kook;Choi, Hang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.692-695
    • /
    • 2010
  • 일반적으로 모델개선에서는 부재단위의 강성을 파악하기 때문에 구조물의 취약부인 부재단부의 손상이 집중될 경우 손상의 형태를 세밀히 파악하기 어려우며 손상된 구조물의 거동을 정확하게 모사하기 어려운 단점이 있었다. 이를 해결하기 위해서는 부재 단부에 발생한 손상을 고려할 수 있는 좀 더 정밀한 해석 모델을 통한 모델개선이 필요하다. 본 연구에서는 부재 단부에 반강접 접합을 가지는 해석모델을 사용해 모델 개선을 실시하고 이를 통해 접합부의 손상 평가와 손상 구조물의 거동을 파악하였다. 제안된 방법을 5층 1경간의 RC 벽식 실험체의 손상탐지에 적용하였으며 그 결과 부재단위 모델을 사용할 때보다 더욱 정확하게 구조물의 손상을 평가하고 거동을 모사할 수 있었다.

  • PDF

Damage Detection on Thin-walled Structures Utilizing Laser Scanning and Standing Waves (레이저 스캐닝 및 정상파를 이용한 평판 구조물의 손상탐지)

  • Kang, Se Hyeok;Jeon, Jun Young;Kim, Du Hwan;Park, Gyuhae;Kang, To;Han, Soon Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.401-407
    • /
    • 2017
  • This paper describes wavenumber filtering for damage detection using single-frequency standing wave excitation and laser scanning sensing. An embedded piezoelectric sensor generates ultrasonic standing waves, and the responses are measured using a laser Doppler vibrometer and mirror tilting device. After scanning, newly developed damage detection techniques based on wavenumber filtering are applied to the full standing wave field. To demonstrate the performance of the proposed techniques, several experiments were performed on composite plates with delamination and aluminum plates with corrosion damage. The results demonstrated that the developed techniques could be applied to various structures to localize the damage, with the potential to improve the damage detection capability at a high interrogation speed.

Impact Source Location on Composite CNG Storage Tank Using Acoustic Emission Energy Based Signal Mapping Method (음향방출 에너지 기반 손상 위치표정 기법을 이용한 복합재 CNG 탱크의 충격 신호 위치표정)

  • Han, Byeong-Hee;Yoon, Dong-Jin;Park, Chun-Soo;Lee, Young-Shin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • Acoustic emission (AE) is one of the most powerful techniques for detecting damages and identify damage location during operations. However, in case of the source location technique, there is some limitation in conventional AE technology, because it strongly depends on wave speed in the corresponding structures having heterogeneous composite materials. A compressed natural gas(CNG) pressure vessel is usually made of carbon fiber composite outside of vessel for the purpose of strengthening. In this type of composite material, locating impact damage sources exactly using conventional time arrival method is difficult. To overcome this limitation, this study applied the previously developed Contour D/B map technique to four types of CNG storage tanks to identify the source location of damages caused by external shock. The results of the identification of the source location for different types were compared.

Structural Damage Detection by Using the Time-Reversal Process of Lamb Waves and the Imaging Method (Lamb파의 시간-반전과정 및 이미지기법을 이용한 손상탐지)

  • Jun, Yong-Ju;Lee, U-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.320-326
    • /
    • 2011
  • This paper proposes a baseline-free SHM technique in which the time-reversal process of Lamb waves and the imaging method are used. The proposed SHM technique has three distinct features when compared with the authors' previously proposed one: (1) It use the reconstructed signal for damage diagnosis, without need to extract the damage signal as the difference between reconstructed signal and initial input signal; (2) It use the imaging method based on the time-offlight information from the reconstructed signal, instead of using a pattern comparison method; (3) In order to make the damage image more clear, the modified mathematical definition of damage image in a pixel is used. The proposed SHM technique is evaluated through the damage detection experiment for an aluminum plate with damage at different locations.

Verification of Damage Detection Using In-Service Time Domain Response (사용중 시간영역응답을 이용한 손상탐지이론의 검증)

  • Choi, Sang-Hyun;Kim, Dae-Hyork;Park, Nam-Hoi
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.9-13
    • /
    • 2009
  • Modal parameters including resonant frequencies and mode shapes are heavily utililized in most damage identification throries for structural health monitoring. However, extracting modal parameters from dynamic responses needs postprocessing which inevitably involves errors in curve-fitting resonants as well as transforming the domain of responses. In this paper, the applicability of a damage identification method based on free vibration responses to the in-sevice responses is experimentally verified. The experiment is performed via applying periodic and nonperiodic moving loads to a simply supported beam and displacement responses are measured. The moving load is simulated using steel balls and a downhill device. The damage identification results show that the in-service response may be applicable to identifying damage in the beam.

Inverse Perturbation Method and Sensor Location for Structural Damage Detection (구조물의 손상탐지를 위한 역섭동법과 센서위치의 선정)

  • Park, Yun Cheol;Choe, Yeong Jae;Jo, Jin Yeon;Kim, Gi Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.31-38
    • /
    • 2003
  • In the present work, a nonlinear inverse perturbation method which has been used in the structural optimization, is adopted so as to identify the structural damages. Unlike the structural optimization, a larger number of constrained equations than the number of unknown parameters are often required detect structural damage. Therefore, nonlinear least squares method is utilized to solve the problem. Because only a limited number of sensors are available I real situation of damage detection, the determination of sensor location becomes one of the most important issues. Hence, this work concentrates on the issue of sensor placement in the framework of nonlinear inverse perturbation method, and the performances of various methodologies concerning to sensor placement are compared with each other. The comparisons show tat the successive elimination method gets good performance for sensor placement. From the several numerical studies, it is confirmed that the inverse perturbation method, combined with the successive elimination method, is very promising in structural damage detection.