• Title/Summary/Keyword: 손상진전

Search Result 132, Processing Time 0.023 seconds

A Study on Prediction of Fatigue Damage Crack Growth for Stiffener Bonded Composite Laminate Panel (보강재 본딩접합 복합재 적층판구조 피로손상 균열진전 수명예측에 대한 연구)

  • Kwon, Jung-Ho;Jeong, Seong-Moon
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • The prediction and analysis procedure of fatigue damage crack growth life for a stiffener bonded composite laminate panel including center hole and edge notch damage, was studied. It was performed on the basis of fatigue damage growth test results on a laminated skin panel specimens and the analysis results of stress intensity factor for the stiffener bonded composite panel. According to the comparison between experimental test and prediction results of fatigue damage growth life, it was concluded that the residual strength and damage tolerance assessment can be carried out along to the edge notch crack growth.

Prognostic Technique for Ball Bearing Damage (볼 베어링 손상 예측진단 방법)

  • Lee, Do Hwan;Kim, Yang Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1315-1321
    • /
    • 2013
  • This study presents a prognostic technique for the damage state of a ball bearing. A stochastic bearing fatigue defect-propagation model is applied to estimate the damage progression rate. The damage state and the time to failure are computed by using RMS data from noisy acceleration signals. The parameters of the stochastic defect-propagation model are identified by conducting a series of run-to-failure tests for ball bearings. A regularized particle filter is applied to predict the damage progression rate and update the degradation state based on the acceleration RMS data. The future damage state is predicted based on the most recently measured data and the previously predicted damage state. The developed method was validated by comparing the prognostic results and the test data.

Finite Element Based Edge Crack Analysis of Silicon-Steel Sheet in Cold Rolling (실리콘 강판 압연시 에지크랙 발생에 관한 유한요소해석)

  • Byon, Sang-Min;Lee, Jae-Hyun;Kim, Sang-Rok;Jang, Yun-Chan;Na, Doo-Hyun;Lee, Jong-Bin;Lee, Gyu-Taek;Song, Gil-Ho;Lee, Sung-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.511-517
    • /
    • 2009
  • In this paper an finite element approach for the edge crack analysis of silicon-steel sheet during cold rolling is presented. Based on the damage mechanics, the proposed approach follows the analysis steps which are composed of damage initiation, damage evolution and fracture. Through those steps, we can find out the initiation instant of crack and resulting propagated length and shape of the crack. The material constants related to fracture is experimentally obtained by tension tests using standard sheet-type specimen and notched sheet-type specimen. To evaluate the prediction accuracy, we performed a pilot rolling test with a initially notched sheets. It is shown that the results obtained by the approach converged to the experimental one concerning about the direction and length of propagated crack. The capability of the proposed one is demonstrated through the application to the actual silicon-steel rolling mill.

Crack Propagation Analysis Using the Concept of an Equivalent Plastic Hinged Length (등가소성힌지개념을 이용한 지하구조물 균열진전해석)

  • Park, Si-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.115-124
    • /
    • 2009
  • In this study, a numerical analysis technique was newly developed to evaluate the damage propagation characteristics of concrete structures. To do this, numerical techniques are incorporated for the concrete members up to the compressive damage due to the bending compressive forces after the tensile crack based on the deformation mechanism. Especially, for the compressive damage stage after the tensile crack, the crack propagation process will be analyzed numerically using the concept of an equivalent plastic hinged length. Using this concept, it can be established that section forces, such as axial forces and the moment cracks takes place, can be related to the width of the crack making it possible to analyze the crack extension.

Experimental Study on Evaluation of Fatigue Crack Growth Rate of Steel Plates using Crack Opening Displacement (COD(Crack Opening Displacement) 측정을 통한 강재의 피로균열진전속도 추정에 관한 실험적 연구)

  • Kim, Kwang-Jin;Kim, In-Tae;Ryu, Yong-Yeol
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.589-597
    • /
    • 2010
  • Steel structures have a higher probability of being damaged by fatigue than by other causes of deterioration. As such, their maintenance to prevent fatigue damage is essential to sustain their safety and performance during their service period. In their maintenance, the current state of their fatigue cracks must be assessed to determine appropriate reinforcement methods and the suitable time intervals of periodic inspections when fatigue cracks are detected. Determining the crack growth rate is a successful method of predicting fractures, but it requires technical knowledge on fracture mechanics and experience in numerical methods and software for finite element analysis. In this study, a fatigue crack growth test on through-thickness cracked steel plates was conducted to assess the crack growth rate without superior technical knowledge and experience. The relationship between the Crack Opening Displacement (COD) and the crack growth rate was found in relatively long fatigue cracks.

Damage Tolerance Assessment for Fatigue-Critical Locations of Wing Structure of Aged Aircraft (장기운영 항공기 주익 구조물 피로임계부위의 손상허용평가)

  • Chun, Young-Cheol;Kim, Won-Cheol;Jin, Ji-Won;Chung, Tae-Jin;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.129-136
    • /
    • 2017
  • This study aims to assess the damage tolerance of the wing structure of aged aircraft with long-term service through the fatigue crack growth analysis and tests. For the fatigue-critical locations (FCL) W2 and W4 in the wing structure, the fatigue stress spectrum was derived based on a previous study. Thereafter, a crack propagation analysis for the FCLs was conducted using the commercial software $NASGRO^{TM}$. The algorithm for the fatigue stress spectrum was verified. Fatigue crack growth tests were then performed for two types of specimens: Type #1 was extracted from the wing structure of aged aircraft, and Type #2 was made of the same material as the wing structure. By comparing the experimental results of these specimens, we assessed the damage tolerance of the wing structure of aged aircraft with service time.

Application of Nonlocal Anisotropic Damage Model for the Reinforced Concrete Structures (철근콘크리트 구조물에 대한 비국소 이방성 손상모델의 적용)

  • Woo, Sang Kyun;Kwon, Yong Gil;Han, Sang Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.309-316
    • /
    • 2010
  • This paper proposed a nonlocal anisotropic damage model to simulate the behavior of plain and reinforced concrete structures that are predominantly tensile and compressive load. This model based on continuum damage mechanics, used a symmetric second-order tensor as the damage variable. For quasi-brittle materials, such as concrete, the damage patterns were different in tension and in compression. These two damage states were modeled by damage evolution laws ensuring a damage tensor rate proportional to the total strain tensor in terms of principal components. To investigate the effectiveness of proposed model, the double edge notched specimen experimented by nooru-mohamed and reinforced concrete bending beam were analyzed using the implementation of the proposed model. As the results for the simulation, the nonlocal anisotropic damage model with an adequate control of rupture correctly represented the crack propagation for mixed mode fracture. In the structural failure of reinforced concrete bending beam, the proposed model can be showed up to a very high damage level and yielding of the reinforcements.

피로균열진전거동 평가를 위한 균열길이 측정법 - 직류전위차법

  • 한승호
    • Journal of the KSME
    • /
    • v.37 no.10
    • /
    • pp.41-46
    • /
    • 1997
  • 철강구조물 부재 내에 노치나 균열이 존재할 수 있고, 외부의 피로하중에 의하여 취약부에서 발생한 균열이 진전하여 전구조물의 최종파손을 야기시킬 수 있다. 부재를 보다 안전하게 사용하고 또한 신뢰성을 확보하기 위해서는 이미 손상된 부재에서 균열의 진전상태를 계측할 수 있는 방법이 확립되어져야 하고, 파괴역학적 파라미터를 이용한 사용재의 균열진전거동특성이 평가되어야 한다. 균열길이의 측정방법은 지금까지 많은 연구자들에 의하여 개발되어져 왔는데 크게 광학현미경을 이용하여 육안으로 직접 균열길이를 측정하는 방법과 컴플라이언스, 초음파, AE 또는 전기적 신호를 통하여 얻어진 결괄부터 균열길이로 환산하는 간접적인 방법으로 대별된다. 대부분의 균열길이의 측정방법은 많은 수작업이 요구되고, 특히 하한계응력확대계수영역의 미세한 균열진전량을 측정하기에는 어려움이 따르고 있다. 이에 대하여 전도체 시험편에 일정전류를 흐르게 하고 균열길이의 증가에 따라 변화하는 전위차로 이를 균열길이로 평가하는 전기적인 측정방법이 있다. 이 방법은 실험장치가 비교적 간단하고 미세한 균열길이의 측정이 용이하여 균열길이의 직접적인 측정이 곤란한 고온역 그리고 충격하중하에서의 균열길이 측정에 이용이 확대되고 있다. 이 글에서는 여러 균열길이 측정방법의 장.단점에 대하여 고찰하고, 그 중 많은 장점을 갖고 있는 직류전위차법의 실험방법을 소개한다.

  • PDF

AE을 이용한 Woven 구조 CFRP 적층 복합재의 손상특성 평가

  • 윤유성;권오헌
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.101-104
    • /
    • 2002
  • 직물구조 복합재료는 일방향 섬유강화복합재료에 비해 변형능력이나 인장강도가 우수하므로, 항공우주, 첨단 산업 기기에 적용될 뿐만 아니라 다른 광범위한 분야에서 사용되고 있으나 복잡한 강화구조를 가지기 때문에 그 역학적 손상거동은 파악하기가 쉽지 않다. Uetsugi 등은 직물구조 CFRP 복합재에 대하여 미세구조를 고려한 유한요소모델을 제안하여 손상진전 해석하였고, 지금까지 많은 연구자에 의해 여러 가지 수법이 제안되어져 왔으나, 아직까지 명확한 파괴거동 해석수법이 확립되어 있지 않다.(중략)

  • PDF