• Title/Summary/Keyword: 손상역

Search Result 241, Processing Time 0.028 seconds

System Condensation Technique-Based Inverse Perturbation Method of Damage Detection (시스템 축소기법이 적용된 역섭동법을 이용한 손상탐지)

  • Choi, Young-Jae;Lee, U-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.98-104
    • /
    • 2002
  • System condensation technique improves the efficiency of the inverse perturbation method of damage detection developed in the previous work. The technique is applied to transform the unmeasured DOFs to the measured DOFs. This approach makes it possible to eliminate the unmeasured DOFs, which accelerates the computational efficiency. The numerical instability problems due to the system condensation technique are also resolved by updating the transformation matrix for each step, and also by adopting the accelerated improved reduced system(AIRS) condensation method.

Acoustic Emission during Crack Propagation Process of Rubber-Modified Epoxy Resin (고무변성 에폭시 수지의 균열진전과정과 음향방출 특성)

  • 이덕보;김현수;최낙삼;남기우;문창권
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.44-50
    • /
    • 2003
  • The damage zone around a crack tip occurring before the fracture is a significant domain. which affects the toughening mechanism of materials. In this study. the growth process of damage zone in the vicinity of crack tip for rubber-modified epoxy resin is investigated using an acoustic emission(AE) analysis. The weight fractions of rubber(CTBN 1300$\times$B) in rubber-modified epoxy resin are 5 wt% and 15 wt%. The fracture toughness($K_{IC}$) and the fracture energy($G_{IC}$) were measured using 3 point bending single-edge notched specimens. The damage zone and rubber particles distributed around the crack tip were observed by a polarized optical microscope and an atomic force microscope(AFM). The damage zone around crack tip of rubber-modified epoxy resin was formed at 13 % loading and developed until 57 % loading of the fracture load. The crack initiated at 57 % loading grew repeatedly in the stick-slip propagation behavior. Based on time-frequency analysis, it was confirmed that AE signals with frequency bands of 0.15~0.20 MHz and 0.20~0.30 MHz were generated from cavitation and stable/unstable cracking inside the damage zone.

Fracture Behavior of Pre-cracked AISI 4130 Specimens by Means of Acoustic Emission and Ultrasonic C-scan Measurements (음향방출과 초음파 C-scan을 이용한 AISI 4130 균열재의 파괴거동 연구)

  • Ong, J.W.;Moon, S.I.;Jeong, H.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.3
    • /
    • pp.7-13
    • /
    • 1993
  • Fracture behavior of pre-cracked compact tension specimens made of AISI 4130 steel was investigated using acoustic emission (AE) and ultrasonic C-scan measurements. While each specimen was loaded up to a certain level, various acoustic emission parameters were recorded together with the crack opening displacement (COD). An elastic-plastic finite element analysis was performed to calculate COD and the damage (plastic) zone size ahead of crack tip. Ultrasonic C-scans, in a pulse-echo, immersion mode, were done for mapping the damage zone size. The agreement between the finite element results and the measured COD was satisfactory. Based on AE results, the test specimens were found to show ductile behavior. The slope of the total ringdown counts vs. COD curve was useful to determine the crack initiation. The preliminary C-scan images showed evidence of changes in the amplitude of ultrasonic signal in the damaged region, and the shape and size of the damage zone matched qualitatively with the finite element results. A further work on the damage zone sizing was also pointed out.

  • PDF

Inverse Perturbation Method and Sensor Location for Structural Damage Detection (구조물의 손상탐지를 위한 역섭동법과 센서위치의 선정)

  • Park, Yun Cheol;Choe, Yeong Jae;Jo, Jin Yeon;Kim, Gi Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.31-38
    • /
    • 2003
  • In the present work, a nonlinear inverse perturbation method which has been used in the structural optimization, is adopted so as to identify the structural damages. Unlike the structural optimization, a larger number of constrained equations than the number of unknown parameters are often required detect structural damage. Therefore, nonlinear least squares method is utilized to solve the problem. Because only a limited number of sensors are available I real situation of damage detection, the determination of sensor location becomes one of the most important issues. Hence, this work concentrates on the issue of sensor placement in the framework of nonlinear inverse perturbation method, and the performances of various methodologies concerning to sensor placement are compared with each other. The comparisons show tat the successive elimination method gets good performance for sensor placement. From the several numerical studies, it is confirmed that the inverse perturbation method, combined with the successive elimination method, is very promising in structural damage detection.

Damage Detection in Truss Structures using Anti-Optimization (역 최적화 방법을 이용한 트러스 구조물의 손상탐지)

  • Lee, Seung Hye;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.441-449
    • /
    • 2013
  • Damaged structures change the value of natural properties. The purpose of this study is to detect damage using the difference of natural properties between the healthy state and the damaged state. Anti-optimization method is used to find the conditions that maximize the difference in characteristics between the two contrasting models. In this paper, a algorithm for finding the loading conditions which can maximize the difference of strain energy between the healthy state and the damaged state of truss structures is developed. Numerical examples show that the proposed method is accurate and efficient for truss structures.

Restoration of Membrane Performance for Damaged Reverse Osmosis Membranes through in-situ Healing (손상된 역삼투막의 in-situ 힐링을 통한 막 성능 복원)

  • Yun, Won Seob;Rhim, Ji Won;Cho, Young Ju
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.96-104
    • /
    • 2019
  • The purpose of this paper is whether or not the in-situ restoration of the reverse osmosis (RO) membranes which its membrane function is lost is possible. The damaged RO membranes are double coated through the salting-out method by the poly(styrene sulfonic acid) sodium salt as the cationic exchange polymer and the polyethyleneimine as the anionic exchange polymer and also conducted the opposite order of the coating materials. And according to the concentration, time and ionic strength, the flux and rejection are measured for the coated membranes. Then the best coating condition is to apply for the RO membrane module of the household water purifier to know the possibility of the in-situ restoration for the commercial module. When the condition of the PEI 30,000 ppm (IS = 0.1)/PSSA 20,000 ppm (IS = 0.7) is applied, the rejection was enhance from 69% for the damaged module to 86% (90% for the pristine module).

Adaptive Neural Network Controller Design for a Blended-Wing UAV with Complex Damage (전익형 무인항공기의 복합손상을 고려한 적응형 신경망 제어기 설계 연구)

  • Kim, Kijoon;Ahn, Jongmin;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • This paper presents a neural network controller design for complex damage to a blended wing Unmanned Aerial Vehicle(UAV): partial loss of main wing and vertical tail. Longitudinal/lateral axis instability and the change of flight dynamics is investigated via numerical simulation. Based on this, neural network based adaptive controller combined with two types of feedback linearization are designed in order to compensate for the complex damage. Performance of two kinds of dynamic inversion controllers is analyzed against complex damage. According to the structure of the dynamic inversion controller, the performance difference is confirmed in normal situation and under damaged situation. Numerical simulation verifies that the instability from the complex damage of the UAV can be stabilized via the proposed adaptive controller.

Seismic Capacity Evaluation of Existing Structures Incorporating Damage Assessment (구조손상을 고려한 기설구조물의 내진성능평가)

  • Song, Jong Keol;Yi, Jin Hak;Lee, Dong Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.543-553
    • /
    • 2004
  • This paper covered two related subjects: the use of the inverse modal perturbation technique to assess structural damage in existing structures; and the use of a seismic capacity evaluation to assess damaged structures, with the aid of the identified structural damage. The substructural identification and the Tikhonov regularization algorithm were incorporated for efficient damage assessment of complex and large frame structures. The seismic capacity of a damaged structure was evaluated by comparing the structure's seismic responses and seismic damage indices. The effectiveness of the proposed method has been investigated through the numerical simulation study for a twenty-story frame structure with undamaged and damaged cases, and also different earthquake excitations.

Damage Detection of Truss Structures Using Extended Projection Filter (확장사영필터를 이용한 트러스 구조물의 손상 검출)

  • Suh, Ill-Gyo;Lim, Eun-Ji
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.195-201
    • /
    • 2005
  • In this paper, a study of damage measures for truss structures using the Extended Projection filter theory is presented. Many researchers are interested in inverse problems and one of solution procedures for inverse problems that are very effective is the approach using the filtering algorithm in conjunction with numerical solution methods. In this paper, the projection filtering in conjunction with structural analysis is applied to the identification of damages in truss structures. And, the effectiveness of proposed method is verified through the numerical examples of a free vibrating structure.

Evaluation of Water Quality Change by Membrane Damage to Pretreatment Process on SDI in Wastewater Reuse (하수재이용에서 전처리 막 손상에 의한 수질변화가 SDI에 미치는 영향평가)

  • Lee, Min Soo;Seo, Dongjoo;Lee, Yong-Soo;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.253-263
    • /
    • 2022
  • This study suggests a guideline for designing unit process of wastewater reuse in terms of a maintenance of the process based on critical parameters to draw a high quality performance of RO unit. Defining the parameters was done by applying membrane integrity test (MIT) in pretreatment process utilizing lab-scale MF. SDI is utilized for judging whether permeate is suitable to RO unit. However, result said TOC concentration matching with particle count analysis is better for judging the permeate condition. When membrane test pressure (Ptest) was measured to derive log removal value in PDT, virgin state of membrane fiber was used to measure dynamic contact angle utilizing surface tension of the membrane fiber. Actually, foulant affects to the state of membrane surface, and it decreases the Ptest value along with time elapsed. Consequently, LRVDIT is also affected by Ptest value. Thus, sensitivity of direct integrity test descends with result of Ptest value change, so Ptest value should be considered not the virgin state of the membrane but its current state. Overall, this study focuses on defining design parameters suitable to MF pretreatment for RO process in wastewater reuse by assessing its impact. Therefore, utilities can acknowledge that the membrane surface condition must be considered when users conduct the direct integrity test so that Ptest and other relative parameter used to calculate LRVDIT are adequately measured.