• Title/Summary/Keyword: 손상값

Search Result 855, Processing Time 0.07 seconds

Low-velocity Impact Damage of a Thick Pressure vessel (복합재료 만든 두꺼운 압력용기의 저속충격에 관한 연구)

  • 김형원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.92-97
    • /
    • 2000
  • Low-velocity impact damage of a thick pressure vessel by composite materials was studied using the modified Herzian contact radius theory. Impactors of various masses and various tup shapes were dropped freely in the range of 20m to 200mm height. With acceleration gage and strain gage installed on the impactor, impact force and acceleration and Contact radius were measured. After a test, the samples were radiographed to scan the state of damage. Compared with hemispherical tup of 12.7mm diameter, the contact radius of hemispherical tup of 25.4mm diameter was bigger. And the experimental data and the theoretical data was different due to the mechanical properties difference. The acceleration value was changed linearly according to the height.

  • PDF

Period Detection of Randomness Ultrasonic Signal Occurred Repeatedly by a Tire Damage (타이어 손상에 의해 반복적으로 발생하는 랜덤성 초음파 신호의 주기검출)

  • Jung, Sun-Yong;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.251-258
    • /
    • 2013
  • We studied it about ways to detect damage of a tire about randomness ultrasonic signal which occurs repeatedly while rub a tire of driving car and a road surface. The signal randomness is decreased through the preprocess of short-time energy calculation and the average value of coherence function is used by the normalization expression of the signal randomness. The process limit that can be decide on the dominant period of a signal using the coherence threshold is analyzed and the algorithm to decide the dominant period is proposed by setting up the -3dB threshold of the maximum value on the power spectrum.

Evaluation of mechanical backside damage by minority carrier recombination lifetime and photo-acoustic displacement method in silicon wafer (실리콘 웨이퍼에서 광열 변위법과 소수 반송자 재결합 수명 측정에 의한 기계적 후면 손상 평가)

  • 최치영;조상희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.117-123
    • /
    • 1998
  • We investigated the effect of mechanical backside damage in Czochralski grown silicon wafer. The intensity of mechanical damage was evaluated by minority carrier recombination lifetime by laser excitation/microwave reflection photoconductivity decay method, photo-acoustic displacement method, X-ray section topography, and wet oxidation/preferential etching methods. The data indicate that the higher the mechanical damage intensity, the lower the minority carrier lifetime, and the photo-acoustic displacement values increased proportionally, and it was at Grade 1: Grade 2:Grade 3 = 1:19.6:41 that the normalized relative quantization ratio of excess photo-acoustic displacement in damaged wafer was calculated, which are normalized to the excess PAD from sample Grade 1.

  • PDF

A Fault Diagnosis of Damage on Inner Liner of Regeneratively-Cooled Combustion Chamber during Gas Generator Cycle Engine Hot Firing Test (가스발생기 사이클 엔진 연소시험 중 재생냉각형 연소기의 내피 손상진단)

  • Hwang, Dokeun;Kim, Hyeon-Jun;Kim, Jong-gyu;Kim, Munki;Lim, Byoungjik;Kang, Donghyuk;Joo, Seongmin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1165-1168
    • /
    • 2017
  • This paper suggests a fault diagnosis of damage on inner liner of regeneratively-cooled combustion chamber during gas generator cycle rocket engine hot firing test. This method focuses on a phenomenon that fuel flow rate difference between two flow estimate methods changes under an inner liner damage of combustion chamber causing fuel leakage and it is expected that it contributes to detect a damage on the combustion chamber in early stage and prevent further destruction during the hot firing test.

  • PDF

Damage Evaluation of a Framed Structure Using Wavelet Packet Transform (웨이블렛펙킷 변환을 이용한 프레임 구조물의 건전성 평가)

  • Kim, Han Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.159-166
    • /
    • 2007
  • This paper evaluates the soundness of structural elements using Wavelet Packet Transform (WPT). WPT is applied to the response acceleration of a framed structure which is subjected to earthquake load to decompose the response acceleration, then the energy of each component is calculated. The first five largest components in energy magnitude among the decomposed components are selected as input to an ANN to identify the damage location and severity. Two nodes in output layer yield damaged element and damage severity respectively. This method successfully evaluates the amount of damage and its location in the structure.

Reversible Image Watermarking with Differential Histogram Shifting and Error Prediction Compensation (차이값 히스토그램 쉬프팅과 오류 예측 보정을 이용한 가역 영상 워터마킹)

  • Yeo, Dong-Gyu;Lee, Hae-Yeoun;Kim, Byeong-Man;Kim, Kyung-Su
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.6
    • /
    • pp.417-429
    • /
    • 2010
  • Reversible watermarking inserts watermark into digital media in such a way that visual transparency is preserved and then enables to restore the original media from the marked one without any loss of media quality. This watermarking can be applied to quality-sensitive imaging such as medical imaging, military imaging, remote-sensing imaging, and precious artwork, where the original media should be preserved during image processing and analysis. In this paper, a reversible image watermarking technique that embeds message bits by modifying the differential histogram of adjacent pixels is presented. In order to satisfy both high embedding capacity and visual quality, the proposed technique exploits the fact that adjacent pixels in the image have highly spatial correlation. Also, we prevent overflow/underflow problem and salt-and-pepper artifacts by employing a predicted error compensation scheme. Through experiments using various test images, we prove that the presented technique provides perfect reversibility and high embedding capacity, while maintaining the induced-distortion low.

Optimization of Sensor Location for Real-Time Damage assessment of Cable in the cable-Stayed Bridge (사장교 케이블의 실시간 손상평가를 위한 센서 배치의 최적화)

  • Geon-Hyeok Bang;Gwang-Hee Heo;Jae-Hoon Lee;Yu-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.172-181
    • /
    • 2023
  • In this study, real-time damage evaluation of cable-stayed bridges was conducted for cable damage. ICP type acceleration sensors were used for real-time damage assessment of cable-stayed bridges, and Kinetic Energy Optimization Techniques (KEOT) were used to select the optimal conditions for the location and quantity of the sensors. When a structure vibrates by an external force, KEOT measures the value of the maximum deformation energy to determine the optimal measurement position and the quantity of sensors. The damage conditions in this study were limited to cable breakage, and cable damage was caused by dividing the cable-stayed bridge into four sections. Through FE structural analysis, a virtual model similar to the actual model was created in the real-time damage evaluation method of cable. After applying random oscillation waves to the generated virtual model and model structure, cable damage to the model structure was caused. The two data were compared by defining the response output from the virtual model as a corruption-free response and the response measured from the real model as a corruption-free data. The degree of damage was evaluated by applying the data of the damaged cable-stayed bridge to the Improved Mahalanobis Distance (IMD) theory from the data of the intact cable-stayed bridge. As a result of evaluating damage with IMD theory, it was identified as a useful damage evaluation technology that can properly find damage by section in real time and apply it to real-time monitoring.

A Study on Weighted Spectral Subtraction Using Adaptive Threshold in Car Noise Environment (차량내 잡음 환경에서 적응적 경계값을 이용한 가중치 주파수 차감에 관한 연구)

  • 전선도;강철호;김종찬;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.8
    • /
    • pp.73-77
    • /
    • 1998
  • 본 연구는 자동차내 배경 잡음에 의해 손상된 음성에서 배경 잡음을 주파수 차감에 의하여 제거시킨다. 특히 음성정보의 손실이 적은 잡음 추정 방법으로 가중치를 이용하여 잡음을 가중치 주파수 차감법을 이용하였다. 이러한 가중치 주파수 차감법은 잡음의 변화가 완만한 경우에 적당하다. 그러나 실제적인 상황에서 배경잡음신호의 변화가 큰 경우가 존재 한다. 이러한 이유는 본 연구는 잡음 추정시 잡음 추정값을 이용하여 추정 잡음 경계값을 적응적으로 변화시키는 차감법을 제안한다. 이 방법은 추정된 잡음 신호의 변화율을 이용하 여 경계값을 상황에 따라 적응적으로 변화시키는 방법이다. 모의 실험에 의하여 고정적인 경계값을 갖는 가중치 주파수 차감법에 비해 제안한 적응적 경계값을 갖는 가중치 주파수 차감법의 출력 SNR이 증가함을 확인하였고, 음성 인식 시스템에 적용한 인식 실험에서도 성능이 향상됨을 확인하였다.

  • PDF

Damage Assessment Technique for Bridge Structures By Moving Load Tests and Optical Displacement Measurements (광변위 계측과 주행하중시험기법에 의한 교량구조의 손상도 추정기법)

  • Lee, Hyeong-Jin;Kim, Jong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.769-777
    • /
    • 2015
  • In this paper, a damage assessment technique using a moving load test and optical sensors was studied to overcome the deficiency of measurement information in bridge maintenance. Continuous displacements by applying the reciprocal theorem to the test can make the assessment simpler and more practical. Numerical and experimental studies were performed to show the efficiency and accuracy of the proposed technique as well as the possibility of a more realistic assessment for large infrastructure. The results showed that the assessed damage levels are quite accurate, and similar to the exact values in actual damage locations, even in the experiments. The proposed technique is useful and practical for both detecting damage locations and damage quantities.

An Assessment of the Excavation Damaged Zone in the KAERI Underground Research Tunnel (원자력연구원 내 지하처분연구시설의 암반 손상대 발생영향 분석)

  • Kim, Jin-Seop;Kwon, Sang-Ki;Cho, Won-Jin
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.21-31
    • /
    • 2009
  • An excavation damaged zone (EDZ) is created by fracturing, excavation or stress redistribution of tunnels. In this zone the mechanical and hydraulic properties of rock are changed, which makes additional cracks and serves as a dominant pathway of groundwater flow. In this study, an assessment on an EDZ size was practiced by the measurement of the deformation modulus at the KAERI underground research tunnel (KURT), and the information was applied to the modelling analysis using FLAC2D software. The EDZ at KURT fell into the range of 0.6~1.8m and the deformation moduli of the EDZ generally correspond to about 40% of intact rock mass. With a consideration of the EDZ in numerical analysis, tunnel displacements increased by about 65% and the maximum principal stress decreased to 58% from the case without EDZ. The plastic zone of the tunnel was enlarged to the crown and invert zones of the tunnel within the range of the length of rock bolts. About 2% of the total tunnel displacement with EDZ was suppressed by the KURT support system. It is anticipated that the investigation of an EDZ can be used as an important and fundamental research for validating the overall performance of a high level waste disposal system.