• Title/Summary/Keyword: 속도 복합형 초음속 터빈

Search Result 4, Processing Time 0.025 seconds

Performance Characteristics of Velocity Compound Supersonic Impulse Turbine with the Rotor Overlaps (속도 복합형 초음속 충동형 터빈의 동익 오버랩에 따른 성능특성)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • As a preview study, present research analysed the performance characteristics of a velocity compound supersonic impulse turbine with the rotor overlaps before adapting the overlap has the best turbine performance. This research was conducted for the turbine with square cross-section nozzles instead of axisymmetric nozzles and wrap around nozzles. Through 3-dimensional flow analysis for the turbine by a commercial flow analysis package, tip overlap case was more effective to improve the turbine performance than case hub overlap, and overlap case applied the hub and tip of the rotor had the largest improvement for the turbine performance in the cases. In case of overlap for the 2nd stage rotor, improvement of the turbine performance was not visibly large. Because, generated power in the 2nd stage is 22~23% of whole generated turbine power.

Effects on the Performance of Velocity Compound Supersonic Impulse Turbine with the Rotor Overlaps (속도 복합형 초음속 충동형 터빈의 로터 블레이드 오버랩이 성능특성에 미치는 영향)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.43-48
    • /
    • 2010
  • Present study was conducted numerical analysis for velocity compound supersonic impulse turbine with the rotor overlaps, and the performance characteristics were analyzed through the numerical results. Tip overlap was more effective than hub overlap through the analysis. a case, overlap applied the hub and tip of the rotor, has the largest improvement for the turbine performance in parametric study cases. In case of overlap for the 2nd stage rotor, however, improvement of the turbine performance was not visibly large. Because, power generated in the 2nd stage was 22~23% of whole generated turbine power.

  • PDF

Numerical Analysis for a Supersonic Turbine having Square Section Nozzles (사각 단면 노즐을 장착한 초음속 터빈유동장의 수치해석)

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • Numerical analyses of a turbine redesigned to achieving the weight reduction by equipping square nozzles and the original turbine have been conducted and the results have been compared. The results show that the turbine with square section nozzles has more even flow distribution at the first row rotor inlet and less inactive areas but the loss induced by wake is increased. Despite the wake loss, the newly designed turbine shows better performance than the original one. It has also been found that the turbine performance can be improved by reshaping its stator and second row rotor.

Design of Velocity and Pressure Compounded Impulse Turbine (속도 및 압력 복합형 충동 터빈 설계)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • Design of velocity-compounded turbine for 75ton class LRE turbopump application and pressure compounded turbine for 30ton class LRE turbopump has been performed. 1D calculation and CFD analysis were conducted in determining blade and flow passage shape of velocity compounded turbine iteratively. Finally, 23.1% improved specific power and 5% reduced weight turbine to the original design was developed. In case of pressure-compounded supersonic turbine design, rotational speed was increased by 50% and the effect of carryover ratio, 2nd nozzle installation angle, leakage flow of 2nd nozzle, and work sharing factor was studied. Final 1D design resulted 36% increased specific power and 51% reduced weight comparing to the original single-row impulse turbine. It is anticipated that nozzle flow path design will be very important for the accomplishment of expected performance of pressure-compounded turbine and nozzle shape optimization will be conducted through the CFD analysis.