Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.883-885
/
2020
최근 활발히 진행되는 교통 속도 예측 연구는 기존에는 하나의 모델로 하나의 도로구간에 대해서만 예측하는 문제를 주로 다루었다. 그러나 하나의 도로구간을 하나의 속도 예측 모델로 예측할 시, 도로구간마다 모델이 존재하여야 하므로 모델의 예측 비용이 도로구간의 수만큼 증가한다. 본 논문에서는 하나의 모델을 통해 다수의 도로구간에 대한 속도를 예측하는 다중 도로구간 속도 예측 모델을 제안한다. 제안하는 다중 도로구간 속도 예측 모델은 기존의 단일 도로구간 속도 예측 모델 대비 정확도를 보존하면서, 그 예측 비용을 크게 감소시켰다.
한반도 중부에 위치한 대전 지진관측소(TJN) 하부의 세부 지각구조를 밝혀내기 위하여 수신함수를 이용한 선형화된 역산(linearized inversion) 방법을 적용하였다. 본 방법의 비단일해(nonuniqueness)와 초기 모델 의존성의 문제를 해결하기 위해 근사 초기 속도 모델로부터 72개의 서로 다른 초기 모델을 구하여 역산을 수행한 후 결과모델들의 평균 속도 모델을 제시하는 방법을 사용하였다. 역산 결과 총 72개의 모델 중 뚜렷한 지각-맨틀 경계를 보이는 43개의 모델만이 조건에 만족하는 결과를 나타내었다. 모든 모델에서 속도 구조는 전체적으로 깊이에 따라 속도의 불연속면이나 급격한 증가없이 연속적인 변화를 하며, 모호면의 깊이는 30~32.5 km의 범위로 나타났다. 평균적인 하부 지각의 속도는 6.5 km/s, 상부 맨틀의 속도는 7.8 km/s로 뚜렷한 속도 변화를 보였다. 결과 모델 군은 중부지각(mid-crust)에서의 속도를 기준으로 약한 저속도층을 나타내는 군과 상대적으로 일정한 속도를 가지는 군으로 구분되었다. 단지 지진파형의 비교만으로 두 모델군 중 합당한 모델군의 선택은 불가능하였다. 따라서 수신 함수를 이용하여 연구 지역의 신뢰할 만한 지각 구조를 구하기 위해서는 그 지역에 대한 지질학적, 지구물리학적 추가정보와의 동반 해석이 요구된다.
본 논문은 전류모델과 전압모델의 장점을 취해 자속을 추정하는 고피나스(Gopinath) 모델 자속 추정기에 속도 피드백 오차가 미치는 영향에 대해 분석하였다. 속도 오차는 전류 모델의 위상 지연 및 크기 오차를 발생시키고, 이로 인해 고피나스 모델에 의해 추정 된 회전자 자속의 위상 및 크기에 오차가 발생하였다. 따라서 전류모델에 발생한 위상 지연을 통해 속도 오차를 보상하여 자속 추정 오차를 감소시키는 새로운 알고리즘을 제시하였고, 시뮬레이션 결과를 통해 검증하였다.
Velocity model building is an essential procedure in seismic data processing. Conventional techniques, such as traveltime tomography or velocity analysis take longer computational time to predict a single velocity model and the quality of the inversion results is highly dependent on human expertise. Full-waveform inversions also depend on an accurate initial model. Recently, deep neural network techniques are gaining widespread acceptance due to an increase in their integration to solving complex and nonlinear problems. This study investigated cases of seismic velocity model building using deep neural network techniques by classifying items according to the neural networks used in each study. We also included cases of generating training synthetic velocity models. Deep neural networks automatically optimize model parameters by training neural networks from large amounts of data. Thus, less human interaction is involved in the quality of the inversion results compared to that of conventional techniques and the computational cost of predicting a single velocity model after training is negligible. Additionally, unlike full-waveform inversions, the initial velocity model is not required. Several studies have demonstrated that deep neural network techniques achieve outstanding performance not only in computational cost but also in inversion results. Based on the research results, we analyzed and discussed the characteristics of deep neural network techniques for building velocity models.
There always exist the spatial variations of material properties such as a shear wave velocity in a dam and between same type dams. These uncertainties cause those in evaluation of a shear wave velocity profile of a dam and should be considered in determining the shear wave velocity profile for a rockfill zone of a fill dam. In this paper, these uncertainties of a shear wave velocity in the rockfill zone of the fill dam in Korea are evaluated. And the shear wave velocity profile model considering these uncertainties in rockfillzone is proposed using the method based on Harmonic wavelet transform. The proposed shear wave velocity profile model is compared with Sawada-Takahashi model widely used for evaluation of a shear wave velocity profile of a rockfill zone of fill dams.
Proceedings of the Korea Society for Simulation Conference
/
2002.11a
/
pp.91-97
/
2002
DEVS 형식론을 비롯한 모듈러한 시스템 모델링 방법은 복잡한 시스템을 모델링 할 때 유리하다. 반면에, 모듈러한 구성요소 모델들은 타 구성요소 모델의 상태 정보를 참조, 복사함으로써 빈번한 메시지 전달을 야기 시켜 시뮬레이션 속도가 저하되는 단점이 있다. 모델 합성법(Composition)은 여러 개의 요소모델들을 하나로 통합시키는 연산으로서 시스템 검증 분야에서 많이 사용되어져 왔다. 본 논문은 모델 합성법을 이용하여 구성요소 모델들 간에 주고받는 메시지 수를 줄이고 시뮬레이션 속도를 개선시키는 방법을 제안한다. 간단한 예제를 통하여 제안한 방법을 자세히 보여주고자 한다.
Transactions of the Korean Society of Mechanical Engineers
/
v.16
no.7
/
pp.1391-1397
/
1992
Improved power law flow model was suggested for the calculation of wake flow characteristics around the three dimensional ship stern in case of the formation of bilge vortex in the direction of stern. In comparison with the power law and Coles flow model, the flow velocity calculated based on this study was delayed around the boundary of inner layer and outer layer in reverse flow. More accurate results was obtained with this improved power law flow model by the velocity calculation around ship stern. Accuracy was validated with the comparison of other calculation results and experimental datas.
본 논문에서는 실험적으로 구한 엔진 토크 참조 표를 이용하여 엔진의 비선형 모델을 구하고 이를 각각의 운전 점에 대해 선형화한 엔진 모델을 제시하였다. 이러한 선형화된 엔진 모델을 이용하여, 전기식 조속기를 사용한 디젤 엔진의 속도 제어에 있어 발생하는 안정성 문제를 해석하였다. 제시한 디젤 엔진 모델을 이용하여 속도제어기의 비례, 적분 미분 이득을 설정하고 이 값을 바탕으로 모의실험 및 실험을 통하여 제시한 모델의 타당성을 검증 하였다.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.530-531
/
2023
딥러닝에서 지식 증류 기법은 큰 모델의 지식을 작은 모델로 전달하여 작은 모델의 성능을 개선하는 방식이다. 지식 증류 기법은 모델 경량화, 학습 속도 향상, 학습 정확도 향상 등에 활용될 수 있는데, 교사 모델이라 불리는 큰 모델은 일반적으로 학습된 딥러닝 모델을 사용한다. 본 연구에서는 학습된 딥러닝 모델 대신에 수치 기반 시뮬레이션 모델을 사용함으로써 어떠한 효과가 있는지 검증하였으며, 수치 모델을 활용한 기상 예측 모델에서의 지식 증류는 기존 단독 딥러닝 모델 학습 대비 더 작은 학습 횟수(epoch)에서도 동일한 에러 수준(RMSE)까지 도달하여, 학습 속도 측면에서 이득이 있음을 확인하였다.
DEVS formalism is advantageous in modeling large-scale complex systems and it reveals good readability, because it can specify discrete event systems in a hierarchical manner. In contrast, it has drawback in that the simulation speed of DEVS models is comparably slow since it requires frequent message passing between the component models in run-time. This paper proposes a method, called model composition, for simulation speedup of DEVS models. The method is viewed as a compiled simulation technique which eliminates run-time interpretation of communication paths between component models. Experimental results show that the simulation speed of transformed DEVS models is about 18 times faster than original ones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.