• Title/Summary/Keyword: 속도제어-정용량펌프

Search Result 2, Processing Time 0.013 seconds

Path Control with Energy-Saving Load-Sensing for a Cylinder-Load System Using Speed-Controlled Fixed Displacement Pump (속도제어-정용량 펌프를 사용하는 실린더-부하계의 에너지절약-부하감지형 경로제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.3
    • /
    • pp.16-22
    • /
    • 2009
  • This paper deals with the issue of robust position tracking control and energy-saving control for a valve-controlled cylinder system using speed-controlled fixed displacement pump. The whole feedback control system is composed of a pair of interconnected subsystems, that is, valve-controlled cylinder system and load-sensing control system. From experiments it is shown that position tracking control in the load sensing control system can accomplish significant reduction in input energy to pump comparing to a conventional valve-controlled cylinder system, while exhibiting the same position tracking control accuracy.

  • PDF

Motion Control of Injection Moulding Cylinder with Electric-Hydrostatic Drives (전기-정유압 구동식 사출성형 실린더의 운동제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.26-31
    • /
    • 2008
  • This paper deals with the issue of position tracking control of a clamp-cylinder for injection moulding machine with electric-hydrostatic drives. A fixed displacement pump is utilized in combination with AC motor in order to directly control a clamp-cylinder. A clamp-cylinder may be required to operate under a variety of operating conditions. Therefore, robust control performance is important in position tracking control applications. In order to accommodate mismatches between the real plant and the model used for controller design, discrete-time sliding mode control is developed by combining a velocity feedforward loop. From tracking control experiments, it is shown that significant reduction in position tracking error is achieved through the use of sliding mode control.

  • PDF