• 제목/요약/키워드: 속도교란

검색결과 143건 처리시간 0.024초

해안침식이 우세한 반폐쇄적 조간대의 퇴적작용: 한국 서해안의 함평만 (Tidal-Flat Sedimentation in a Semienclosed Bay with Erosional Shorelines: Hampyong Bay, West Coast of Korea)

  • 장진호;김여상;조영길
    • 한국해양학회지:바다
    • /
    • 제4권2호
    • /
    • pp.117-126
    • /
    • 1999
  • 해안침식이 우세한 반폐쇄적 조간대의 퇴적작용을 규명하기 위해 우리 나라 서해안의 함평만 조간대에서 지형, 퇴적물, 집적율, 해안절벽의 침식율 등을 조사하였다. 함평만 조간대는 전반적으로 조류세곡(tidal creek)의 발달이 미약하고, 고조선 해빈(high-tide beach), 조간대 사주(intertidal sand shoal) 등에 의해 지형적 기복이 표시되며, 대체로 상부방향으로 오목한 지형단면을 보인다. 조간대 퇴적물은 해안절벽의 침식에 의해 공급된 육상기원의 조립 퇴적물(자갈, 모래)과 조석작용에 의해 바다로부터 공급된 세립 퇴적물(펄)이 다양하게 혼합됨으로써 복모드형 입도분포, 불량한 분급, 양의 왜도 등의 조직적 특성을 보인다. 표층 퇴적물의 퇴적상 분포는 대체로 저조선 방향과 만 입구 방향으로 세립해지는 경향을 보여, 조간대의 일반적 경향과 다르다. 조간대층은 대부분 생물교란에 의해 균질화된 상태이며, 만 입구의 펄질 조간대에서 제한적으로 렌즈상층리(lenticular bedding), 평행엽리(parallel lamination) 통이 관찰된다. 조간대의 침식은 상부 조간대와 하부 조간대를 중심으로 추로 봄철(3~5 월)과 겨울철(10~3월)에 우세하며, 침식우세 지역의 경우 연평균 침식율이 5.2 cm/yr에 이른다. 침식에 의한 해안절벽의 후퇴는 내만역의 절벽에서 최고 1.4 m/yr의 속도로 이루어지는데, 대체로 초여름(5~6 월)에 우세하여 조간대의 최대 침식시기(봄철)와 1~2 개월의 시간차를 보인다. 이렇듯 함평만과 같은 전형적인 반폐쇄적 환경 내에서 조간대와 해안절벽이 침식되는 까닭은 풍파와 지역적 해수면 상승의 상호작용 때문인 것으로 판단된다.

  • PDF

인삼의 종간잡종 Panax ginseng x P Quinquefoilium의 발생학적 연구 특히 결실불능의 원인에 관하여 (The embryological studies on the interspecific hybrid of ginseng plant (Panax ginseng x P. Quiuquefolium) with special references to the seed abortion)

  • 황종규
    • 한국작물학회지
    • /
    • 제5권1호
    • /
    • pp.69-86
    • /
    • 1969
  • 인삼식물의 종간교잡에 있어서 일대잡종식물은 양친에 대하여 약 1.6~3.0배의 강제를 나타내지만 심한 불임현상으로 거의 잡종 제삼세대를 얻을수 없었다는 점에서 그 원인을 밝히고저 고려인삼${\times}$인 미국인삼의 잡종에 대한 발생학적조사관찰을 하였던 바 다음과 같은 결과를 얻었다. 1. 잡종인삼의 영양생장은 양친과 같이 정상적이며 강세를 나타내나 생식생장에서는 심한 조해를 받는다. 2. 생식기관형성에 있어서도 감수분열기 이전까지는 제조직의 발생은 거의 정상적으로 진행된다. 3. 대포자모세포나 소포자모세포의 감수분 장과정은 심한 불규칙성을 나타내며 어떠한 것은 분열직전부터 퇴화되기 시작한다. 4. 소포자모세포의 핵분열에 있어서 제1분열 중기 또는 후기에 일가염색체 또는 염색체교 등이 출현하는 이상분열상을 관찰할 수 있었으나 감수분열이 끝난 것은 역시 사분자가 대부분이고 이분자나 사분자 이상의 소포자형성은 볼 수 없었다. 5. 소포자형성 또는 화분형성과정에 있어서 한 약내에서 여러 단계의 발육상을 볼 수 있었다. 6. 거대, 미소, 공허화분은 극히 적었다.(Fig. 23). 7. 대포자모세포기 이후 배주의 발육속도는 전반적으로 지연된다. 8. 감수분열을 마친 후 대포자는 오분자를 형성하는 것도 있다.(Fig. 5). 9. 대개는 합점측의 대포자가 활성화하는데 중간에 위치하는 것이 활성대포자인 것도 불 수 있다.(Fig. 6). 10. 배주의 퇴화는 대포자모세포기부터 팔핵배낭기까지 사이에 일어나는데 그 시작 시기는 개체마다 조만이 있으며 각양각색이다. 11.0 대포자의 배열은 양친에서는 선장, 중간형인데 F1에서는 선장, 중간형, T형, ㅗ형 등 여러 가지 형을 볼 수 있다.(Fig. 5, 7). 12. 배주에 있어서 감수분열이나 배낭핵분열 또는 배낭형성에 불규칙성에 심할수록 합점기부에 잔재하는 배심조직이 크다(Fig. 8, 10). 13. 배낭형성기까지 도달한 것이라 하더라도 배낭핵은 항시 불안정하여 정해진 장소에 배치되지 못한다.(Fig. 10, 11, 12). 14. 배유조직을 결한 배낭내에 선장의 4세포원배를 형성한 것을 볼 수 있었다.(Fig. 20) 15. 인삼의 잡종에 있어서의 불임원인을 다음과 같이 추정하였다. a) 잡종의 불임현상은 교잡에 의한 Gene-action system의 재조합으로 생체대사계에 혼란을 일으켜 배우자형성세포와 위요세포간의 우열관계가 전도되여 성적결함을 가져오는데 있다고 보았다. 즉 정상배낭에서는 배우자형성세포는 그것을 둘러싸고 있는 위요세포보다 크고 농염되며 활성적이어서 위요세포를 소화흡수하여 발육케 된다. 그러나 퇴화배낭에서는 재조합으로 인한 세포질의 변화는 극성 (Polarity) 또는 내생리듬 (Endogneousrhythm)의 변화 혹은 교란을 가져와 발육과정에서 성적결함을 일으켜 불임으로 된다고 추정하였다.

  • PDF

근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究) (Studies on Nutrio-physiological Response of Rice Plant to Root Environment)

  • 박준규;김영섭;오왕근;박훈;시택문웅
    • 한국토양비료학회지
    • /
    • 제2권1호
    • /
    • pp.53-68
    • /
    • 1969
  • 생산력이 서로 다른 두 토양(土壤)에 유기물(有機物)을 첨가(添加)하여 근부(根部) 환경(環境)의 변화(變化)와 수도품종별(水稻品種別) 근(根)의 근부(根部) 환경(環境)에 대(對)한 반응(反應)을 육안(肉眼) 관찰(觀察)하고 양분흡수(養分吸收)를 조사(調査)하여 다음과 같은 결과(結果)를 얻었다. 1) 고위답토양(高位畓土壤)은 유기물(有機物)의 분해(分解)가 완만(緩慢)하며 분해평형점(分解平衡點)에서의 유기물(有機物) 함량(含量)이 높고 저위답토양(低位畓土壤)은 유기물(有機物)의 분해(分解)가 급속(急速)하며 분해평형점(分解平衡點)에 함량(含量)이 낮다. 2) 저위답토양(低位畓土壤)은 근(根)의 발육(發育)이 조해(阻害)되며 유기물(有機物) 첨가(添加)에 의(依)하여 더욱 조해(阻害)된다. 유기물(有機物)의 분해(分解)로 생기는 gas가 근(根) 주변(周邊)에 피막(被膜)을 형성(形成)하는데 기인(起因)하는것 같으며 이 결과(結果)로 T/R 값이 심히 떨어진다. 3) 품종간(品種間) 근부(根部) 환경(環境)에 반응력(反應力)이 현저하여 수원(水原) 82호(號)는 농림(農林) 25호(號) 보다 고위답(高位畓) 토양(土壤)에서는 흡수력(吸收力)이 강(强)하고 저위답토양(低位畓土壤)에서는 흡수력(吸收力)이 떨어진다. 4) 유기물(有機物) 첨가(添加)로 가리흡수(加里吸收)가 조해(阻害)되고 저위답토양(低位畓土壤)에서는 인산흡수(燐酸吸收)가 가장 조해(阻害)되는데 저위답토양(低位畓土壤)에 유기물(有機物)을 첨가(添加)하여 이 두 인자(因子)가 공역(共役)할 경우 양분흡수조해(養分吸收阻害)는 상승적(相乘的)으로 야기(惹起)된다. 5) 근(根)의 활력(活力)과 근수(根數), 지상부(地上部) 생육량(生育量) 및 근부생육량(根部生育量)과의 상관(相關)은 각각(各各) r=0.839, r=0.834, r=0.948로 모두 1%에서 유의성(有意性)이 있고 지상부(地上部)와 근부(根部)의 N.P.K. 흡수량(吸收量)과도 각각(各各), r=0.751, r=0.670, r=0.769, r=0.729, r=0.742, r=0.815로 5% 수준(水準)에서 유의성(有意性)이 있으며 근부(根部)의 생육량(生育量) 및 가리(加里)의 흡수량(吸收量)과의 상관계수(相關係數)가 가장 크다. 6) 근부환경(根部環境)이 나쁜곳에서는 좋은 곳에서보다 수도지상부(水稻地上部)의 질소농도(窒素濃度)는 낮고 근부(根部)는 훨씬 높아서 ammonia 과잉(過剩)의 해독(害毒)이 예상되며 인산(燐酸)과 가리(加里)는 양부위(兩部位)에서 모두 심히 낮으며 특히 간(稈)과 엽초(葉稍)에서 더욱 낮았다. 7) 근부환경(根部環境)이 나쁜 곳에서는 좋은곳에서보다 지상부(地上部)의 당(糖)과 전분(澱粉) 및 전탄수화물(全炭水化物) 함량(含量)이 높은데 반(反)하여 근부(根部)에서는 낮은데 환원당(還元糖)에서 더욱 심하여 근부(根部)에서는 당(糖)의 이상소모(異常消耗)가 예상되고 지상부(地上部)에서는 이에 대비하여 당(糖) 대사(代謝)가 해당방향(解糖方向)으로 주력(注力)함이 예상된다. 8) 근부환경(根部環境)이 나쁜곳에서는 근부(根部)에서 지상부(地上部)로 양분(養分)의 전류(轉流)가 극히 나빴다. 9) 근부환경(根部環境)이 나쁜곳에서는 황산(黃酸)의 함유율(含有率)이 높은데 엽신(葉身)에서 특히 높아 황산(黃酸) Ion에 의(依)한 ATP 생성(生成) 조해(阻害)가 예상되고 $P_2O_5/S$ 값은 고위답(高位畓) 유기물무시용구(有機物無施用區)의 1/5에 불과(不過)하여 P-S 비(比)가 관련된것 같다. 10) 근부환경(根部環境)이 나쁜곳에서는 지상부(地上部) 철(鐵)의 함량(含量)에는 차이(差異)가 없으나 Mn 함량(含量)은 상당히 적은 편이어서 $Fe/P_2O_5$ 값이 큰데 간(稈)과 엽초(葉稍)에서 7배(倍)나 되어 철인산(鐵燐酸) 침전에 의(依)한 통도(通導)의 기계적(機械的) 장해(障害)가 예상된다. 11) 토양중(土壤中) 조해성(阻害性) 인자(因子)는 유기물(有機物) 분해속도(分解速度)가 빠른 경우 악화(惡化)되어 근부기능기(根部機能基)를 조해(阻害)하여 양분(養分)을 조지(阻止)하고 체내(體內) Ion 평형(平衡)(N. P. K. S. Fe)을 교란(攪亂) 이상대사(異常代謝)(해당작용(解糖作用) A. T. P 생성약화(生成弱化))를 일으켜 전류(轉流)가 방해(防害)되고 따라서 각부위(各部位)의 생육(生育)의 불균형(不均衡)을 초래(招來)하는 연발생(連發生) 조해작용(阻害作用)이 순환가속(順換加速)하는 것으로 추정(推定)된다. 12) 고위답(高位畓)에서 질소(窒素)의 시용량(施用量)에 따른 근분포(根分布)를 조사(調査)한 결과(結果) 저위답(低位畓)은 표토부분(表土部分)에 분포(分布)하나 고위답(高位畓)에서는 심토(心土)에 분포비율(分布比率)이 많다. 질소(窒素) 무시용(無施用)은 지하(地下) 0~7cm 부위(部位)에 분포(分布) 비율(比率)이 크고 질소(窒素)를 시용(施用)하면 7~14cm 부위(部位)에 근분포(根分布) 비율(比率)이 많다. 전(全) 근중(根重)은 저위답(低位畓)에 비(比)하여 고위답(高位畓)에 많고 질소(窒素) 무시용(無施用)에 비(比)해서 질소(窒素) 10a 12kg 시용(施用)에서 많았다.

  • PDF