• Title/Summary/Keyword: 속도교란

Search Result 143, Processing Time 0.023 seconds

Quartz Dissolution by Irradiated Bacillus Subtilis (방사선을 조사(照射)한 Bacillus Subtilis에 의한 석영 용해)

  • Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.335-342
    • /
    • 2009
  • The effects of bacterial lysis on the rate of quartz dissolution were investigated under pH 7 condition using Bacillus subtilis cells which were either irradiated or non-irradiated with gamma ray. The amount of dissolved organic carbon (DOC) which resulted from bacterial lysis increased in slurries of quartz and bacteria mixture over experimental period. Lysis of non-irradiated bacteria led to the elevated concentration of dissolved silicon when compared with abiotic control. Concomitant increase in the amounts of DOC and dissolved silicon over time indicated that lixiviation of silicon from quartz was due to bacterial lysis. Higher amounts of DOC and dissolved silicon were present in the irradiated bacterial slurries than those of non-irradiated bacteria. The enhancement of quartz dissolution in the irradiated bacterial slurries was likely attributed to disruption of organic molecules in the bacterial cells by gamma ray and formation of effective ligands for quartz dissolution. The results suggest that the effects of bacterial lysis on mineral weathering rate should be considered for prediction of time for released radionuclides to migrate to surface biosphere in high level radioactive waste disposal site.

Isolation of Acinetobacter calcoaceticus BP-2 Capable of Degradation of Bisphenol A (Bisphenol A 분해균주 Acinetobacter calcoaceticus BP-2의 분리 및 bisphenol A 분해 특성)

  • Kwon, Gi-Seok;Kim, Dong-Geol;Lee, Jung-Bok;Shin, Kee-Sun;Kum, Eun-Joo;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1158-1163
    • /
    • 2006
  • Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane, has been widely used as a monomer for production of epoxy resins and polycarbonate plastics, and final products of BPA include adhesives, protective coatings, paints, optical lens, building materials, compact disks and other electrical parts. Since BPA is a toxic chemical to elicit acute cell cytotoxicity and chronic endocrine disrupting activity, the degradation of BPA has been focused during last decades. To overcome the problem of photo-, and chemical-degradation of BPA, in this study, a bacterium that is able to biodegrade BPA, was isolated. The bacterium, isolated froln the soil of plastic factory, was identified as Acinetobacter calcoaceticus (strain BP-2) based on physiological and 16S rDNA sequencing analysis. A. calcoaceticus BP-2 was able to grow in the presence of $1140{\mu}g\;ml^{-1}$ BPA. Biodegradation experiments showed that BP-2 mineralized BPA via 4-hydroxybenzoic acid and 4-hydroxyacetophenone, and average degradation rate was $53.3{\mu}g\;ml^{-1}\;day^{-1}$ under optimal conditions (pH 7 and $30^{\circ}C$). In high density resting cell $(3.5g-dcw.1^{-1})$ experiments, the maximal degradation rate was increased to $89.7{\mu}g\;ml^{-1}\;h^{-1}$. Our results suggest that BP-2 has high potential as a catalyst for practical BPA bioremediation.

Parametric Studies for Measurements of Dynamic Properties of Soils Using Inhole type CPTu (인홀형 탄성파콘 시험 결과에 미치는 변수 연구)

  • Jang, In-Sung;Kwon, O-Soon;Kim, Byoung-Il;Lee, Seung-Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.523-531
    • /
    • 2008
  • In hole type CPTu equipment which combines the concepts of inhole test method and piezocone test method was newly developed in order to evaluate the dynamic properties of marine soils. It is possible to perform inhole type CPTu without any additional source device because the source and receiver are contained inside the cone rod, which is different from the conventional seismic cone system. In this study, laboratory tests using kaolinite as soft soil and numerical simulations using finite element method were carried out to investigate the effects of several parameters including test methods and soil conditions on the test results from inhole type CPTu and to find out the optimum test method. It was found that it is necessary to maintain the length of swing arm as well as the distance between source and receiver consistently to obtain the rigorous test results. The laboratory test and numerical results also reveal that contrary to the input wave frequency, the water content of soil layer and the disturbance due to the installation of swing arm apparently affect the shear wave velocity.

Sensitivity Analysis on Ecological Factors Affecting Forest Fire Spreading: Simulation Study (산불확산에 영향을 미치는 생태학적 요소들간의 민감도 분석: 시뮬레이션 연구)

  • Song, Hark-Soo;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • Forest fires are expected to increase in severity and frequency under global climate change and thus better understanding of fire dynamics is critical for mitigation and adaptation. Researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed various simulation models to reproduce forest fire spread dynamics. However, these models have limitations in the fire spreading because of the complicated factors such as fuel types, wind, and moisture. In this study, we suggested a simple model considering the wind effect and two different fuel types. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space with a density ranging from 0.0 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by wind and tree density. The statistical analysis showed that the total tree density had greatest effect on the forest fire spreading and wind had the next greatest effect. The density of the susceptible tree was relatively lower factor affecting the forest fire. We believe that our model can be a useful tool to explore forest fire spreading patterns.

Application of Temperature-compensated Resistivity Probe in the Field (온도보상형 전기저항 프로브의 현장 적용성 평가)

  • Jung, Soon-Hyuck;Yoon, Hyung-Koo;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.117-125
    • /
    • 2011
  • The practical use of the electrical resistivity, which can makes the acquirement of the high resolution data in specific area, is increased in order to obtain a reasonable data for a ground investigation. The objective of this study is development of TRPF(Temperature-compensated Resistivity Probe for Field test), and an application in the field test for obtaining a reliable electrical resistivity value about considering the temperature effects. Temperature sensor is attached at 15mm, 30mm, 90mm below from the cone tip in consideration with the results of temperature transient process of cone probe and safety, and the angle of cone tip is $60^{\circ}$ for geometrical reason and minimizing the disturbance during the penetration test. Diameter of the cone probe is equally 35.7mm and penetration rate is 2 cm/sec for a comparison with standard cones such as CPT and SPT, and others. The temperature change is instantly observed around $4^{\circ}C$ when touching the ground, and the comparing results among the other cones indicates that the temperature compensation should be conducted in the ground survey using the electrical resistivity. This study shows that the necessity of temperature effects compensation during penetration test through the development and field verification of TRPF (Temperature-compensated Resistivity Probe for Field test).

Effects of Construction and Operation of Nuclear Power Plants on Benthic Marine Algae (원자력발전소의 건설과 가동이 저서 해조류에 미치는 영향)

  • 김영환
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 1999
  • During the past several decades, electricity generating plant increased with remarkable rapidity in Korea. Recently the increase has been much more rapid as the rate of industrialization has accelerated. Construction of nuclear power plants in coastal areas inevitably caused the perturbation of critical coastal habitats and thus influenced marine algal species composition. Particularly, an increase in the building of nuclear power plants led the amounts of heat discharged to increase exponentially. As far as the effects of cooling water and thermal discharges are concerned, benthic marine algae are likely to be vulnerable to a discharge. Heated effluents from nuclear power plants, with the temperature rises of 7~12$^{\circ}C$ under normal operating and design conditions, are discharged through the discharge canal and into natural water bodies. It is clear that the characteristic marine algal community is developed in the area affected by the thermal discharges; i.e. low species richness and low species diversity. Nevertheless, it is worthwhile to note that elevated temperatures exert differential effects depending on the algal populations. Benthic marine algae grown at the discharge canal can be regarded as warm tolerant species. 35 species (4 blue-green, 9 green, 8 brown and 14 red algae) of marine algae occurred more than 20eye frequency at discharge canal of three nuclear power plants in the east coast during 1992 ~ 1998 and thus can be categorized as warm tolerant species in Korea. To minimize the ecological impacts of waste heat on benthic marine algae, it is recommended that, in the future, nuclear power plants will have to employ some form of closed-cycle cooling for the condensers.

  • PDF

Experimental Study of Characteristics of Three-Ring Impedance Meter and Dependence of Characteristics on Electric Conductivity of Fluids (3-ring 임피던스미터의 유체 전기 전도도 독립성에 대한 실험적 연구)

  • Kim, Jong-Rok;Ahn, Yeh-Chan;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.1027-1033
    • /
    • 2010
  • A two-phase (gas-liquid) flow is a common phenomenon in fluidic systems, e.g., fluidic systems in the electro-magnetic or nuclear power generation industry and in the steel industry. The measurement of a two-phase flow is important for guaranteeing the safety of the system and for achieving the desired performance. The measurement of the void fraction, which is one of the parameters of the two-phase flow that determines the pressure drop and heat transfer coefficient, is very important. The time resolution achieved by employing the impedance method that can be used to calculate the void fraction from the impedance of the fluid is high because the electric characteristics are taken into account. Therefore, this method can be employed to accurately measure the void fraction without distortion of flow in real time by placing electrodes on the walls of the tubes. Coney analytically studied a ring-type impedance meter, which can be employed in a circular tube. The aim of this study is to experimentally verify the robustness of a three-ring impedance meter to variations in the electric conductivity of the fluid; this robustness was suggested by Coney but was not experimentally verified.

Preliminary Report for KD Subsurface Oil Storage (원유 비축시설 건설을 위한 예비조사)

  • Han, Jeong Sang;Huh, Ginn
    • Economic and Environmental Geology
    • /
    • v.13 no.3
    • /
    • pp.185-192
    • /
    • 1980
  • The rocks exposed in the investigation area are andesite of Late Cretaceous age, and syenite and aplitic granite of Bulgugsa Series of Early Cretaceous Period, which is intruded in the older andesitic rock. The strike and dip of major joint is $N10^{\circ}$ to $60^{\circ}E$, and $70^{\circ}SE$ to vertical respectively. According to seismic exploration, lower velocity zone, deemed to be fractured and/or crushed zone, is appeared along the gully center of east flank of the area. Test drilling shows that andesite bedrock is mostly very hard, massive, and very fine to medium grained and has almost 100 percent RQD and core recovery. In comparision with andesitic bedrock, intruded syenite cores show that it is highly crush especially at the depth from 55m to 63m.

  • PDF

Development of Gravity Gradient Referenced Navigation and its Horizontal Accuracy Analysis (중력구배기반 항법 구현 및 수평위치 정확도 분석)

  • Lee, Jisun;Kwon, Jay Hyoun;Yu, Myeongjong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.1
    • /
    • pp.63-73
    • /
    • 2014
  • Recently, researches on DBRN(DataBase Referenced Navigation) system are being carried out to replace GNSS(Global Navigation Satellite System), as weaknesses of GNSS were found that are caused by the intentional interference and the jamming of the satellite signal. This paper describes the gravity gradient modeling and the construction of EKF(Extended Kalman Filter) based GGRN(Gravity Gradient Referenced Navigation). To analyze the performance of GGRN, fourteen flight trajectories were made for simulations over whole South Korea. During the simulations, we considered the errors in both DB(DataBase) and sensor as well as the flight altitudes. Accurate performances were found, when errors in the DB and the sensor are small and they located at lower altitude. For comparative evaluation, the traditional TRN(Terrain Referenced Navigation) was also developed and performances were analyzed relative to those from the GGRN. In fact, most of GGRN performed better in low altitude, but both of precise gravity gradient DB and gradiometer were required to obtain similar level of precisions at the high altitude. In the future, additional tests and evaluations on the GGRN need to be performed to investigate on more factors such as DB resolution, flight speed, and the update rate.

Numerical Prediction of Ship Induced Wave and its Propagation Using Nonlinear Dispersive Wave Model (비선형분산파랑모형을 이용한 항주파의 발생과 전파에 관한 수치예측모형 개발)

  • Shin, Seung-Ho;Jeong, Dae-Deug
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.527-537
    • /
    • 2003
  • The characteristics of ship induced waves caused by navigation become widely different from both ship's speed and water depth condition. The ship induced waves specially generated in coastwise routes frequently give rise to call unforeseen danger for swimmers and small boats as well as shoreline erosion or sea wall destruction in coastal zones. The main concern of ship induced wave study until now is either how to reduce ship resistance or how to manoeuvre the ship safely under a constant water depth in the view point of shipbuilding engineers. Moreover, due to the trends for appearance of the high speed ships at the shallow coastal water, we are confronted with the danger of damages from those ship induced waves. Therefore, it is necessary to examine the development of ship induced waves and the influence of their deformation effects according to its propagation ray. In present study, in order to predict the development of the ship induced waves and their propagation under the conditions of complicate and variable shallow water depth with varying ship's speed, we constructed a computer model using Boussinesq equation with a fixed coordinate system and verified the model results by comparison with experimental results. Additionally, the model was applied under the variable water depth based on actual passage and we then confirmed the importance of the variable water depth consideration.