• Title/Summary/Keyword: 소형 환형수조

Search Result 2, Processing Time 0.019 seconds

Study of Settling Properties of Cohesive Sediments (점착성 유사의 침강특성에 관한 연구)

  • Choi, In Ho;Kim, Jong Woo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.303-310
    • /
    • 2017
  • This paper is to understand the settling properties of cohesive sediments under effects of ions in turbulent flow. The experiments were conducted using a miniature annular flume(mini flume) with a free water surface. Silica was used as sediment of experiment. The suspended concentrations were measured by using a CCD-Camera. Settling of silica($SiO_2$) was allowed to occur under various shear stresses in a concentration of 7g/L. At condition of pH 4.2 and high NaCl concentration, the floc size D of silica was larger than D at condition of pH6.8 with the bed shear stress increasing. The settling velocity $W_s$ of silica was higher at condition of 10g NaCl/L than $W_s$ at condition of pH4.2. Comparison of measured concentration-time curves and concentration-time curves calculated by this study showed similar tendency in flow under effects of ions.

Physical Characteristics of Floc Density of Suspended Fine Particles in accordance with the Cohesiveness (점착성에 따른 부유 미립자의 플럭밀도에 대한 물리적 특성)

  • Choi, In Ho;Kim, Jong Woo
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.227-234
    • /
    • 2018
  • This paper was examined the physical characteristics of floc density of suspended fine particles with varying cohesiveness. The analysis of floc density was performed in a small annular flume with a free water surface under different bed shear stresses and ion addition. Fine-grained silica was used as model material, as it is the main mineral components of clay that affects sedimentation. It was concluded that floc density depended on increasing the bed shear stress, the salinity and pH value. Floc density decreased with increasing the salinity in still water and floc size, whereas the opposite was true when increasing the bed shear stress. Also, it increased at pH6.8 more than at pH4.2 when increasing the bed shear stress in the range from 0.0086 to $0.0132N/m^2$.