• Title/Summary/Keyword: 소형 항공기

Search Result 268, Processing Time 0.027 seconds

Performance Verification of Active Phased Array Broadband Antenna in Ka-Band (Ka대역 능동위상배열 광대역 안테나 성능 검증 )

  • Youngwan Kim;Jong-Kyun-Back;Hee-Duck Chae;Ji-Han Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • This paper dedcribes the design. verification, and analysis techniques for an advanced phased array antenna. When applying an active phased array antenna to an aircraft or missile, miniaturization of the array antenna and wide-angle beam steering characteristics can be unavoidable antenna design considerations. In particular, the active reflection coefficient characteristics when electronically steering a wide-angle beam is a design parameter that must be minimized in terms of system survival and system performance. As a radiator suitable for broadband characteristics and wide-angle beam steering, this paper designed an array structure using SFN and minimized the active reflection coefficient according to beam steering of up to 40° based on the spherical coordivate system angle. The bandwidth of the radiator was confirmed to be 3GHz based on active reflection in the Ka-band. In addition, the performance of the actually manufactured 8by8 array antenna wsa analyzed by measuring the single pattern of the radiator through a near-field test, mathematically synthesizing it, and predicting the Tx/TRx beam used in the seeker system.

Deep Learning Algorithm Training and Performance Analysis for Corridor Monitoring (회랑 감시를 위한 딥러닝 알고리즘 학습 및 성능분석)

  • Woo-Jin Jung;Seok-Min Hong;Won-Hyuck Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.776-781
    • /
    • 2023
  • K-UAM will be commercialized through maturity after 2035. Since the Urban Air Mobility (UAM) corridor will be used vertically separating the existing helicopter corridor, the corridor usage is expected to increase. Therefore, a system for monitoring corridors is also needed. In recent years, object detection algorithms have developed significantly. Object detection algorithms are largely divided into one-stage model and two-stage model. In real-time detection, the two-stage model is not suitable for being too slow. One-stage models also had problems with accuracy, but they have improved performance through version upgrades. Among them, YOLO-V5 improved small image object detection performance through Mosaic. Therefore, YOLO-V5 is the most suitable algorithm for systems that require real-time monitoring of wide corridors. Therefore, this paper trains YOLO-V5 and analyzes whether it is ultimately suitable for corridor monitoring.K-uam will be commercialized through maturity after 2035.

A Study on Development and Site selection of an AIRFIELD (경비행장 개발 및 입지선정에 관한 연구)

  • Park, Sang-Yong
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.3-36
    • /
    • 2015
  • As of end of 2014, the population engaging in aviation activities for leisure has reached approximately 13 million, where approximately 356 cases involve a general aircraft, 200 cases involve light aircraft, and 636 cases involve an ULM. The industry for leisure has become a very promising industry in line with rapidly rising living standards which are expected to further increase in the future. The demand for such services is expected to increase over time. The purpose of this paper is to review the development and site selection of airfields in anticipation of these developments in the industry. While the government also has experience in the review of airfield location and candidate sites, it is not the government that carries out the actual construction. As such, the feasibility of the site needs to be verified in terms of actual construction. This study identified factors for Site Selection of factors through a review of related documents and existing research reports. A questionnaire was also used to collect the views of experts in the field, which was then analyzed. The Research model was confirmed in the layered form for an AHP analysis. The factors for Site Selection were identified as the technical / operational factors and economic / political elements for a two-stage configuration. The third step consisted of technical and operational elements. The final step is was constructed a total of 11 elements (weather, surface conditions, obstacle limitation surface, airspace conditions, operating procedures, noise problems, environmental issues, availability of facilities, construction and investment costs, contribution to the local economy, accessibility, demand / the proximity of demand). The surveys are conducted for more than 10 General and light aircraft pilots, professionals, and instructor. The analysis results showed a higher level in the technical / operating elements (73.2%) in the first step, while the next step sawa higher level of the operational elements (30.9%) than the other. The factors for Site Selection were any particular elements did not appear high, the weather conditions (17.5%), noise problems (19.8%), the proximity of demand (6%), accessibility (5.7%), environmental issues (11.1%), availability of facilities (8%), airspace conditions (7.9%), obstacle limitation surface (12%), construction and investment costs (4.2%) and to operating procedures (4.9%), contribution to the local economy (3.8%).

The Application of Unmanned Aerial Photograpy for Effective Monitoring of Marine Debris (해안표착물의 효율적인 모니터링을 위한 무선 조정 항공기 촬영기법의 적용)

  • Jang, Seon-Woong;Lee, Seong-Kyu;Oh, Seung-Yeol;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.307-314
    • /
    • 2011
  • This study proposed detection method of Marine debris using unmanned aerial photography. For unmanned aerial photography, a RC(Radio Control) helicopter which has good movability and economics was used. To a camera mounting, a gimbal equipment was attached to the bottom of the RC helicopter. The gimbal equipment is very useful because it is not seriously affected by vibration and rolling. In addition, we invented that digital image processing algorithm using Matlab program for detection of marine debris from photographs. Particularly, background subtraction in invented algorithm was applied. As a result, marine debris of a variety of forms from different sand states of coast were reliably detected. In the future, monitoring using proposed method was expected to contribute that the solution to representative problem of monitoring area selecting and estimate the total litter mass over the beach. Moreover, It is considered a greater application possibility to marine environmental observations.

A study on Air and High Speed Rail modal According to the Introduction of Low Cost Carrier Air Service (저비용항공 진입에 따른 항공과 고속철도수단 선택에 관한 연구)

  • Lim, Sam-Jin;Lim, Kang-Won;Lee, Young-Ihn;Kim, Kyung-Hee
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.51-61
    • /
    • 2008
  • Most of Korea's 15 local airports, with the exception Jeju, Gimpo and Gimhae airports, have been several billion Won in the red each year. It has been reported that one of the causes of the poor financial performance is inaccurate air traffic demand predictions. Under the situation, the entry of low-cost carrier air service using turbo-prop airplanes into the domestic airlines market gets a wide range of support, which is expected to promote the convenience of consumers and help to activate local airports. In this study, the authors (1) suggest a high-speed transport demand model among existing airlines, Korea Train Express (KTX) and low-cost carrier air service; (2) try to make low-cost air carrier demand predictions for a route between Seoul and Daegu through a stated-preference survey; and (3), examine possible effectiveness of selected policy measures by establishing an estimation model. First, fare has a strong influence for mode choice between high-speed transport modes when considering the entry of low-cost carrier air service between Seoul and Daegu. Even low-cost carrier air service fare is set at 38,000 won, which is considerably low compared with that of KTX, in the regions where the total travel time is the same for both low-cost carrier air service and KTX, the probability of selecting low-cost carrier air service is 0.1, which shows little possibility of modal change between high speed transportation means. It is suggested that the fare of low-cost air service between Seoul and Daegu should be within the range of from of 38,000 to 44,000 Won; if it is higher, the demand is likely to be lower than expected.

Construction of Measuring System for Magnetic Properties Measurement of Azimuth Angle Sensor (방위각센서의 자기특성 측정 장치 제작)

  • Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • North indicating azimuth angle sensors have been used in airplanes, ships traditionally and nowadays employed in smart phones. For the azimuth and roll angle measurement of the sensor, 3-axis acceleration sensor was added to the 3-axis magnetic field sensor. In this work, we have constructed a measuring system for the measurement of the magnetic field and the angle uncertainty of the magnetic field sensors. Measuring system could be useful not only in non-magnetic laboratory but also in normal laboratory, we constructed small size of 3-axis Helmholtz coils for the compensation environment magnetic field (Earth magnetic field and magnetic field from building) and the generation of magnetic field for the test of magnetic field sensor. The constructed measuring system could compensate environment magnetic field below 10 nT level and generate 3-dimensional magnetic field with magnitude uncertainty of 0.2 % and angle error of $0.2^{\circ}$ within the volume of ${\pm}30mm$ diameter at center of Helmholtz coils. For the conformation of developed measuring system, We tested commercially available 3-axis magnetometer and heading sensor.

Generation of Hydrogen from Hydrolysis Reaction of NaBH4 Using Fresh Water (담수 사용 NaBH4 가수 분해반응에 의한 수소발생)

  • Oh, Sohyeong;Yoo, Donggeun;Kim, Taeho;Kim, Ikgyun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.503-507
    • /
    • 2021
  • Sodium borohydride, NaBH4, has many advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFC). When PEMFC is used outdoors as a transport type, it is economical to hydrolyze NaBH4 using fresh water instead of distilled water. Therefore, in this study, hydrogen was generated using fresh water instead of distilled water during the NaBH4 hydrolysis process. The properties of NaBH4 hydrolysis were studied using an activated carbon-supported Co-P-B/C catalyst. Fresh water did not generate tetrahydrate during the NaBH4 hydrolysis process, and distilled water produced tetrahydrate by-products, which consumed a lot of water during the hydrolysis process, indicating that at the end of the reaction at a high concentration of 25% or more of NaBH4, dry by-products and unreacted NaBH4 remained. As a result, when fresh water was used, the hydrogen yield and hydrogen generation rate were higher than that of distilled water at a high concentration of 25% or more of NaBH4, indicating that it is suitable for use in transport-type fuel cells such as unmanned aerial vehicles.

A Study on Metaverse Construction Based on 3D Spatial Information of Convergence Sensors using Unreal Engine 5 (언리얼 엔진 5를 활용한 융복합센서의 3D 공간정보기반 메타버스 구축 연구)

  • Oh, Seong-Jong;Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.171-187
    • /
    • 2022
  • Recently, the demand and development for non-face-to-face services are rapidly progressing due to the pandemic caused by the COVID-19, and attention is focused on the metaverse at the center. Entering the era of the 4th industrial revolution, Metaverse, which means a world beyond virtual and reality, combines various sensing technologies and 3D reconstruction technologies to provide various information and services to users easily and quickly. In particular, due to the miniaturization and economic increase of convergence sensors such as unmanned aerial vehicle(UAV) capable of high-resolution imaging and high-precision LiDAR(Light Detection and Ranging) sensors, research on digital-Twin is actively underway to create and simulate real-life twins. In addition, Game engines in the field of computer graphics are developing into metaverse engines by expanding strong 3D graphics reconstuction and simulation based on dynamic operations. This study constructed a mirror-world type metaverse that reflects real-world coordinate-based reality using Unreal Engine 5, a recently announced metaverse engine, with accurate 3D spatial information data of convergence sensors based on unmanned aerial system(UAS) and LiDAR. and then, spatial information contents and simulations for users were produced based on various public data to verify the accuracy of reconstruction, and through this, it was possible to confirm the construction of a more realistic and highly utilizable metaverse. In addition, when constructing a metaverse that users can intuitively and easily access through the unreal engine, various contents utilization and effectiveness could be confirmed through coordinate-based 3D spatial information with high reproducibility.