• Title/Summary/Keyword: 소형 펀치실험

Search Result 11, Processing Time 0.024 seconds

Assessment of Tensile & Ductile-Brittle Transition Characteristics of CrMo Steel Using Small Punch Test (소형펀치실험을 이용한 CrMo강의 인장 및 연취성천이특성의 평가)

  • ;Ha, Jeong-Su
    • Korean Journal of Materials Research
    • /
    • v.8 no.2
    • /
    • pp.99-104
    • /
    • 1998
  • 사용중인 중화학 설비의 재료물성의 경년열화적 특성을 평가하기 위하여 기존 실험법의 인장시험편이나 충격시험편을 채취하기는 실제적으로 불가능하다. 인장강도등 인장특성과 비교한 결과 인장강도, 연신율, 항복강도, 종탄성계수와 소형펀치실험의 각 특성과 선형적 관계를 얻을 수 있었다. 또한 경년열화도를 평가하는 두구인 파면천이온도(FATT)와 비교하기 위하여 저온 소형펀치실험을 실시한 결과 충격실험을 통하여 구한 FATT온도와 소형펀치실험의 천이온도 ( $T_{sp}$ )와 일정한 관계가 있음이 밝혀져 사용재의 열화도를 평가할 수 있다.

  • PDF

Estimation of Elastic Plastic Behavior Fracture Toughness Under Hydrogen Condition of Inconel 617 from Small Punch Test (Inconel 617 재료의 소형펀치 실험을 이용한 수소취화처리재의 탄-소성 거동 및 파괴인성 유추)

  • Kim, Nak Hyun;Kim, Yun Jae;Yoon, Kee Bong;Ma, Young Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.753-760
    • /
    • 2013
  • The hydrogen embrittlement of metallic materials is an important issue from the viewpoint of structural integrity. In this regard, the estimation of mechanical properties and fracture toughness under hydrogen conditions provides very important data. This study provides an experimental validation of the approach for simulating the small punch of Inconel 617 using finite element damage analysis, as recently proposed by the authors, and applies an inverse method for the determination of the constitutive tensile behavior of materials. The mechanical properties obtained from the inverse method are compared with those obtained from the tensile test and validated. The mechanical properties and fracture toughness are predicted by using the inverse method and finite element damage analysis.

Cryogenic fracture behaviors and polarization characteristics according to sensitizing heat treatment on structural material of the nuclear fusion reactor (핵 융합로 구조재료의 예민화 열처리에 따른 극저온 파괴거동 및 분극특성)

  • Kwon, Il-Hyun;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.311-320
    • /
    • 1998
  • The cryogenic fracture behaviors of austenitic stainless steel HN2 developed for nuclear fusion reactor were evaluated quantitatively by using the small punch(SP) test. The electrochemical polarization test was applied to study thermal aging degradation of HN2 steel. The X-ray diffraction(XRD) analysis was conducted to detect carbides and nitrides precipitated on the grain boundary of the heat treated HN2 steel. The mechanical properties of the HN2 steel significantly decreased with increasing time and temperature of heat treatment or with decreasing testing temperature. The integrated charge(Q) obtained from electrochemical polarization test showed a good correlation with the SP energy(ESP) obtained by means of SP tests. From the results observed in the x-ray diffraction and anodic polarization curve, it was known that the material the grain boundary. Combining SP test and electrochemical polarization test, it could be useful tools to non-destructively evaluate the cryogenic fracture behaviors and the aging degradation for cryogenic structural material.

Evaluation of Mechanical Properties on Cryogenic Structrual Steel JN1 Weldments and Heat Treated Materials by Using Miniaturized Small Specimen (소형 시험편에 의한 극저온 구조용강 JN1의 용접부 및 열처리재의 기계적성질 평가)

  • Gwon, Il-Hyeon;Hashida, Toshiyuki;Jeong, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.6 no.9
    • /
    • pp.905-918
    • /
    • 1996
  • 초전도 마그네트 구조용 부재로 최근 개발된 오스테나이트계 스테인레스강 JN1 모재, GTA 용접부 및 열처리재에 대한 기계적 성질을 조사하기 위해 실온(293K)에서 극저온(4K)까지의 온도에서 소형펀치(Small Punch)시험을 실시하였다. GTA 용접부의 용융선 근방의 극저온 기계적 성질은 모재와 용접금속에 비해 크게 저하하였다. 4K에서 실험된 용융선 시험편으로 얻어진 하중-변위곡선상에서 부하의 초기 단계에 보통의 서레이션과 다른 pop-in이 관찰되었고, 이때 시험편 표면의 용융선 근처에서 약 0.1-1mm 정도의 크랙이 발생하였다. 열처리재의 기계적 성질은 열처리 시간과 온도의 증가 또는 시험온도의 저하에 따라 크게 저하되었다. 위의 결과에 기초하여 본 연구에서 실시한 소형 시험편을 사용하는 SP 시험법은 극저온에서 JN1 강의 모재와 열처리재뿐 만 아니라 GTA 용접부의 기계적 성질을 평가할 수 있는 유용한 시험법이었다.

  • PDF

Evaluation of Mechanical Properties of Zirconia/Ni Sintering Materials at High Temperature (고온환경하에서 지르코니아/니켈 소결재의 기계적 특성평가)

  • Kim, Yeon-Jik
    • Korean Journal of Materials Research
    • /
    • v.6 no.9
    • /
    • pp.972-978
    • /
    • 1996
  • 본 논문에서는 1673K에서 소결한 PSZ/Ni 복합재에 대한 종 탄성계수, 파괴강도, 파괴에너지 등의 기계적 특성을 평가하기 위해, 개량형 소형펀치시험을 행한 결과에 대해 논의한다. 또한 파면관찰과 AE법을 통해 이들 재료의 고온환경에서의 미시파괴과정도 조사하였다. 시험온도는 293K, 1073K, 1273K, 1473K의 4종류로 하였으며, PSZ/Ni 복합재료의 체적 조성비도 80/20, 60/40, 40/60, 20/80의 4종류이다. 이들 실험결과로부터, 1073K이상의 고온에서 Ni 함량이 60%인 PSZ/Ni 복합재가 파괴강도 및 파괴에너지가 가장 우수한 것을 알았다. 파면관찰에 의하면 이 재료의 조성비에서 파고거동이 취성으로부터 연성으로 천이하는 것을 확인할 수 있었다.

  • PDF

A Study on the Degradation of Mechanical Properties in High Nitrogen Steel Following Heat Treatments and Welding (고질소계 강의 열처리재 및 용접부의 기계적성질 저하에 관한 연구)

  • 권일현;윤재영;정세희
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.121-128
    • /
    • 1998
  • The degradation of mechanical properties in the high nitrogen steel HN3 developed for nuclear fusion reactor has been evaluated quantitatively using the small punch(SP) test, X-ray diffraction (XRD) analysis has also been conducted to identify carbides or nitrides precipitated on grain boundaries of the heat treated samples. Mechanical properties of the steel HN3 significantly decreased with increasing heat treatment time and temperature or with decreasing testing temperature. Combination of XRD and metallurgical observation, revealed that the material degradation in the thermally aged steel was caused by precipitation of carbides on the grain boundaries. While the weld metal showed the lowest mechanical properties among various microstructures in GTA weldments. By combining SP test and XRD analysis, cryogenic fracture behaviors and aging degradation for high nitrogen steel could be successfully evaluated in nondestructive manner.

  • PDF

Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique Part 2 : Effect of Testing Conditions on Evaluation Value of Degradation Degree and Changes of Mechaical Properties (전기화학적 방법에 의한 내열강의 열화도측정 제2보 : 열화도측정치에 미치는 측정조건들의 영향과 기계적성질 변화에 대해서)

  • 정희돈;권영각;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.300-312
    • /
    • 1993
  • The material deterioration of service-exposed boiler tube steels in fossil power plant was evaluated by using the electrochemical technique namely, modified electrochemical potentiokinetic reactivation(EPR). It was focused that the passivation of Mo$_{6}$C carbide which governs the mechanical properties of Mo alloyed steels did not occur even in the passivity region of steel in sodium molybdate solution and the reactivation peak current (Ip) observed as the result of non-passivation indicating the precipitation of Mo$_{6}$C carbides. To obtain the optimal test conditions for the field test by using the specially designed electrochemical cell, the effects of scan rate, the surface roughness and the pH of electrolyte on Ip value were also investigated. Furthermore, the change of mechanical properties occurred during the long time exposure at high temperature was evlauated quantitatively by small punch(SP) tests and micro hardness test taking account of the metallurgical changes. It is known that reactivation peak current (Ip) has a good relationship with Larson-Miller Parameter(LMP) which represents the information about material deterioration occurred at high temperature environment. In addition it was possible to estimate the ductile-brittle transition temperature (DBTT) by means of the SP test. The Sp test could be, therefore, suggested as a reliable test method for evaluating the material degradation of boiler tube steels. From the good correaltion between the SP DBTT and Ip values shown in this study, it was knows that the change of mechanical properties could be evaluated non-destructively by measurring only Ip values.ues.

Creep Damage Evaluation of High Temperature Material Using Small Punch Test Method (소형펀치실험법을 이용한 고온재료의 크리프 손상 평가)

  • Yu, Hyo-Sun;Lee, Song-In;Baek, Seung-Se;Na, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.265-268
    • /
    • 2000
  • In this study, a small punch creep (SP-Creep) test using miniaturized specimen has been described for the development of the new creep test method for high temperature structural components such as headers and tubes of boiler, turbine casing and rotor, and reactor vessel. The SP-Creep testing technique has been applied to 1Cr-0.5Mo steel used widely as boiler header material and the creep test temperature are varied at $550^{\circ}C{\sim}600^{\circ}C$. From the experimental results, e.g. SP-Creep curve behaviors, the creep rate in steady state and creep rupture life with test temperature and load, the load exponential value(n, m), the activation energy($Q_{spc}$), the Monkman-Grant relation and the creep life assessment equation etc., it can be summarized that the SP-Creep test may be a useful test method to evaluate the creep properties of the heat resisting material such as boiler header.

  • PDF

Empirical Relationship Between SP-curves and Tensile Properties in Mn-Mo-Ni Low Alloy Steels (Mn-Mo-Ni 저합금강의 SP-곡선과 인장물성과의 실험적 관계)

  • Lee, Jae-Bong;Kim, Min-Chul;Park, Jai-Hak;Lee, Bong-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.554-562
    • /
    • 2004
  • An empirical relationship between parameters from SP curves and tensile properties has been systematically investigated by experimental tests and FEM simulations. A series of SP and tensile tests were performed. SP tests were also simulated by FE analysis with various tensile properties. It was found that the yield loads(Py) and the maximum loads( $P_{MAX}$) in SP curves were linearly related with the yield strength($\sigma$$_{o}$) and the tensile strength($\sigma$$_{UTS}$), respectively. The yield loads defined from the intersection point of two lines tangent to the elastic bending region and plastic bending region showed better relation to the yield strength than those from offset line. The maximum loads in SP curves showing plastic instability region was linearly related with the tensile strengths. The slope of SP curves in simulation results had a close correlation with the hardening coefficient and hardening strength as well.l.l.l.

Creep life Prediction for W.M. of High Cr-Mo Steel using Modified Power-law (고 Cr-Mo강의 수정멱수법칙을 이용한 W.M. 크리프 수명예측)

  • An, Jong-Kyo;Yu, Hyo-Sun;Yang, Sung-Mo;Kang, Hee-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.951-956
    • /
    • 2008
  • The high temperature creep properties of the generating plant's high temperature tube, pipe and header and such are very significant in accordance with long-time exposure to the high temperature and pressure environment. Not only this, but as the welding procedure is compulsory for the cohesion of components, the creep properties regarding the local microstructures of steel weldment are very important. In order to understand the creep properties regarding the local microstructures of steel weldment, the SP-Creep test which is easy to get sample from the field component was conducted. The local microstructure of steel weldment, that is, W.M. and B.M.'s microstructures were observed using the SEM. The rupture time of W.M. was longer as 110 % averagely in a same condition, which is the consequence of the difference of the microstructure. Each lethargy coefficient of B.M. and W.M. is evaluated by the relation among the temperature, load and the rupture time from SP-Creep Test. The life estimation equation can be induced by the transformation of Power-law. B.M. and W.M. for each $550\;^{\circ}C$ and $575\;^{\circ}C$, the very similar to normal temperature of the domestic thermal power generation in working, are estimated.