• Title/Summary/Keyword: 소형 객체 탐지

Search Result 15, Processing Time 0.025 seconds

Comparison of Pixel-based Change Detection Methods for Detecting Changes on Small Objects (소형객체 변화탐지를 위한 화소기반 변화탐지기법의 성능 비교분석)

  • Seo, Junghoon;Park, Wonkyu;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.177-198
    • /
    • 2021
  • Existing change detection researches have been focused on changes of land use and land cover (LULC), damaged areas, or large vegetated and water regions. On the other hands, increased temporal and spatial resolution of satellite images are strongly suggesting the feasibility of change detection of small objects such as vehicles and ships. In order to check the feasibility, this paper analyzes the performance of existing pixel-based change detection methods over small objects. We applied pixel differencing, PCA (principal component analysis) analysis, MAD (Multivariate Alteration Detection), and IR-MAD (Iteratively Reweighted-MAD) to Kompsat-3A and Google Map images taken within 10 days. We extracted ground references for changed and non-changed small objects from the images and used them for performance analysis of change detection results. Our analysis showed that MAD and IR-MAD, that are known to perform best over LULC and large areal changes, offered best performance over small object changes among the methods tested. It also showed that the spectral band with high reflectivity of the object of interest needs to be included for change analysis.

Comparison of Semantic Segmentation Performance of U-Net according to the Ratio of Small Objects for Nuclear Activity Monitoring (핵활동 모니터링을 위한 소형객체 비율에 따른 U-Net의 의미론적 분할 성능 비교)

  • Lee, Jinmin;Kim, Taeheon;Lee, Changhui;Lee, Hyunjin;Song, Ahram;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1925-1934
    • /
    • 2022
  • Monitoring nuclear activity for inaccessible areas using remote sensing technology is essential for nuclear non-proliferation. In recent years, deep learning has been actively used to detect nuclear-activity-related small objects. However, high-resolution satellite imagery containing small objects can result in class imbalance. As a result, there is a performance degradation problem in detecting small objects. Therefore, this study aims to improve detection accuracy by analyzing the effect of the ratio of small objects related to nuclear activity in the input data for the performance of the deep learning model. To this end, six case datasets with different ratios of small object pixels were generated and a U-Net model was trained for each case. Following that, each trained model was evaluated quantitatively and qualitatively using a test dataset containing various types of small object classes. The results of this study confirm that when the ratio of object pixels in the input image is adjusted, small objects related to nuclear activity can be detected efficiently. This study suggests that the performance of deep learning can be improved by adjusting the object pixel ratio of input data in the training dataset.

Target Detection Method using Lightweight Mean Shift Segmentation and Shape Features (경량화된 Mean-Shift 영상 분할 및 형태 특징을 이용한 객체 탐지 방법)

  • Kim, Jeong-Seok;Kim, Dae-Yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.41-44
    • /
    • 2022
  • Mean-Shift 영상 분할은 객체 검출을 위한 영상 전처리 방법으로써, 영상 처리 및 패턴 인식 분야에서 널리 사용되는 방법이다. 영상 분할은 영역 기반과 에지 기반 방식으로 나누어지며 대표적으로 FCM, Quickshift, Felzenszwalb, SLIC 알고리즘 등 이 있다. 언급한 영상 분할 방법들은 Mean-Shift 영상 분할에 비해서 빠른 속도로 실행시킬 수 있지만, 형태적 특징이 훼손되고 하나의 객체가 여러 세그멘테이션으로 분할된다는 단점을 가지고 있다. 본 논문에서는 소형 객체를 탐지하기 위한 고속화된 Mean-Shift 영상 분할과 객체의 형태적 특징을 이용하여 객체를 탐지하는 방법을 제안한다. 하드웨어 리소스가 제한된 신호처리기에 제안하는 알고리즘을 수행하기 위하여 Mean-Shift 영상 분할에서 필터링 과정을 고속화 하였고, 적외선 영상 내 영상 전처리 수행을 통해 잡음 제거 후 Mean-Shift 영상 분할 방법을 수행함으로써, 객체의 형태적 특징을 잘 살려서 영상 분할을 할 수 있도록 하였다. 또한 각 세그멘테이션의 크기, 너비, 높이, 밝기 정보와 형태적 특징점을 이용한 객체 탐지 방법을 제안한다.

  • PDF

Implementation of An Unmanned Counter based on YOLO Deep Learning Object Recognition (YOLO 기반 딥러닝 객체 인식 무인계산대 개발에 관한 연구)

  • Park, Tae-Baek
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.776-778
    • /
    • 2022
  • 우리는 일상 속에서 다양한 결제시스템을 접할 수 있다. 그중 무인계산 시스템은 소비자가 구매부터 결제까지 스스로 하는 방식이다. 발전된 기술이 편리함을 제공하지만, 일부 소비자들은 오히려 사용에 어려움을 겪고 사람이 계산을 해주는 기존의 시스템을 선호하는 경우가 많다. 본 논문에서는 소형 IOT 기기와 딥러닝 객체 인식 시스템을 기반으로 한 무인계산대를 설계하고 개발하였다. 계산대의 모습을 구현하기 위해 아두이노 컨베이어 벨트를 이용하고 라즈베리 파이와 파이 카메라를 이용하여 객체 인식 환경을 구현하였다. 파이 카메라를 통해 영상을 인식하고 해당 영상을 실시간으로 전송하여 PC에서 YOLO를 통해 객체를 탐지한다. 이후 탐지된 객체는 소비자가 확인할 수 있도록 디스플레이에 시각화한다. 본 논문에서 제안한 딥러닝 객체 인식 무인계산 시스템은 공산품이 주를 이루는 무인 상점에 활용할 수 있다.

Armed person detection using Deep Learning (딥러닝 기반의 무기 소지자 탐지)

  • Kim, Geonuk;Lee, Minhun;Huh, Yoojin;Hwang, Gisu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.780-789
    • /
    • 2018
  • Nowadays, gun crimes occur very frequently not only in public places but in alleyways around the world. In particular, it is essential to detect a person armed by a pistol to prevent those crimes since small guns, such as pistols, are often used for those crimes. Because conventional works for armed person detection have treated an armed person as a single object in an input image, their accuracy is very low. The reason for the low accuracy comes from the fact that the gunman is treated as a single object although the pistol is a relatively much smaller object than the person. To solve this problem, we propose a novel algorithm called APDA(Armed Person Detection Algorithm). APDA detects the armed person using in a post-processing the positions of both wrists and the pistol achieved by the CNN-based human body feature detection model and the pistol detection model, respectively. We show that APDA can provide both 46.3% better recall and 14.04% better precision than SSD-MobileNet.

Hyperspectral Image Analysis Technology Based on Machine Learning for Marine Object Detection (해상 객체 탐지를 위한 머신러닝 기반의 초분광 영상 분석 기술)

  • Sangwoo Oh;Dongmin Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1120-1128
    • /
    • 2022
  • In the event of a marine accident, the longer the exposure time to the sea increases, the faster the chance of survival decreases. However, because the search area of the sea is extremely wide compared to that of land, marine object detection technology based on the sensor mounted on a satellite or an aircraft must be applied rather than ship for an efficient search. The purpose of this study was to rapidly detect an object in the ocean using a hyperspectral image sensor mounted on an aircraft. The image captured by this sensor has a spatial resolution of 8,241 × 1,024, and is a large-capacity data comprising 127 spectra and a resolution of 0.7 m per pixel. In this study, a marine object detection model was developed that combines a seawater identification algorithm using DBSCAN and a density-based land removal algorithm to rapidly analyze large data. When the developed detection model was applied to the hyperspectral image, the performance of analyzing a sea area of about 5 km2 within 100 s was confirmed. In addition, to evaluate the detection accuracy of the developed model, hyperspectral images of the Mokpo, Gunsan, and Yeosu regions were taken using an aircraft. As a result, ships in the experimental image could be detected with an accuracy of 90 %. The technology developed in this study is expected to be utilized as important information to support the search and rescue activities of small ships and human life.

Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring (핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지)

  • Song, Ahram;Lee, Changhui;Lee, Jinmin;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.991-1005
    • /
    • 2022
  • Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

A YOLOv8-Based Two-Stage Framework for Non-Destructive Detection of Varroa destructor Infestations in Apis mellifera Colonies

  • Yongsun Lee;Hyunsu Cho;Bo-Young Kim;Jihoon Moon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.137-148
    • /
    • 2024
  • The European honeybee (Apis mellifera) is an important pollinator threatened by colony collapse disorder (CCD), primarily due to infestation by the Varroa mite (Varroa destructor). Traditional detection methods are invasive and time-consuming, often causing additional stress to colonies. We propose a two-stage framework using the You Only Look Once version 8 (YOLOv8) model for non-destructive and rapid detection of Varroa mite infestation. The framework uses comb light images from inside the hives. In the first stage, a YOLOv8-n model detects bees and extracts individual bee images. In the second stage, a YOLOv8-cls model classifies the infestation status of each bee. Our object detection model achieved a mAP@0.5 of 0.701, and the classification model achieved an average accuracy of 91%. These results demonstrate the effectiveness of the framework as a non-destructive method for Varroa mite detection. Based on this research, we expect to provide beekeepers with an efficient tool for early detection and management of Varroa mite infestations, potentially reducing the incidence of CCD and supporting the sustainability of apiculture.

An Image Processing Algorithm for Detection and Tracking of Aerial Vehicles in Short-Range (무인항공기의 근거리 비행체 탐지 및 추적을 위한 영상처리 알고리듬)

  • Cho, Sung-Wook;Huh, Sung-Sik;Shim, Hyun-Chul;Choi, Hyoung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1115-1123
    • /
    • 2011
  • This paper proposes an image processing algorithms for detection and tracking of aerial vehicles in short-range. Proposed algorithm detects moving objects by using image homography calculated from consecutive video frames and determines whether the detected objects are approaching aerial vehicles by the Probabilistic Multi-Hypothesis Tracking method(PMHT). This algorithm can perform better than simple color-based detection methods since it can detect moving objects under complex background such as the ground seen during low altitude flight and consider the characteristics of vehicle dynamics. Furthermore, it is effective for the flight test due to the reduction of thresholding sensitivity against external factors. The performance of proposed algorithm is verified by applying to the onboard video obtained by flight test.

Deep Learning Algorithm Training and Performance Analysis for Corridor Monitoring (회랑 감시를 위한 딥러닝 알고리즘 학습 및 성능분석)

  • Woo-Jin Jung;Seok-Min Hong;Won-Hyuck Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.776-781
    • /
    • 2023
  • K-UAM will be commercialized through maturity after 2035. Since the Urban Air Mobility (UAM) corridor will be used vertically separating the existing helicopter corridor, the corridor usage is expected to increase. Therefore, a system for monitoring corridors is also needed. In recent years, object detection algorithms have developed significantly. Object detection algorithms are largely divided into one-stage model and two-stage model. In real-time detection, the two-stage model is not suitable for being too slow. One-stage models also had problems with accuracy, but they have improved performance through version upgrades. Among them, YOLO-V5 improved small image object detection performance through Mosaic. Therefore, YOLO-V5 is the most suitable algorithm for systems that require real-time monitoring of wide corridors. Therefore, this paper trains YOLO-V5 and analyzes whether it is ultimately suitable for corridor monitoring.K-uam will be commercialized through maturity after 2035.