• Title/Summary/Keyword: 소형플랜트

Search Result 56, Processing Time 0.02 seconds

Auto Tuning of Position Controller for Proportional Flow Control Solenoid Valve (비례유량제어밸브 위치제어기 자동조정)

  • Jung, Gyu-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.797-803
    • /
    • 2012
  • Proportional solenoid valves are a modulating type that can control the displacement of valves continuously by means of electromagnetic forces proportional to the solenoid coil current. Because the solenoid-type modulating valves have the advantages of fast response and compact design over air-operated or motor-operated valves, they have been gaining acceptance in chemical and power plants to control the flow of fluids such as water, steam, and gas. This paper deals with the auto tuning of the position controller that can provide the proportional and integral gain automatically based on the dynamic system identification. The process characteristics of the solenoid valve are estimated with critical gain and critical period at a stability limit based on implemented relay feedback, and the controller parameters are determined by the classical Ziegler-Nichols design method. The auto-tuning algorithm was verified with experiments, and the effects of the operating point at which the relay control is activated as well as the relay amplitude were investigated.

Numerical Analysis of Helical Pile Behavior Varying Number and Diameter of Helices (헬릭스 개수 및 직경에 따른 헬리컬 파일 거동의 수치해석적 분석)

  • Bak, Jongho;Lee, Kicheol;Choi, Byeong-Hyun;Kim, Dongwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.211-217
    • /
    • 2019
  • Oil extraction from oil sands, a non-traditional crude oil resource, is attracting attention as the oil price fluctuates due to recent economical and political issues. Many oil sands sites are mainly located in the polar regions. For plant construction to extract crude oil from oil sands in harsh environment of the polar regions, fast and simple installation of plant foundation is necessary. However, typically-used conventional foundations such as drilled shafts and driven piles are not suitable to construct under cold temperature and organic surface layers. In this study, helical piles enabling rapid and simple constructions using small rotary equipment without driving or excavation was considered. The helical pile consists of steel shaft and several helices attached to the steel shaft; therefore, the behavior of the helical pile depends on the number and shape of the helices. The effect of the helices' configuration (number and diameter of helices) on helical pile behavior was analyzed based on the numerical analysis results.

Evaluation of Edge-Based Data Collection System through Time Series Data Optimization Techniques and Universal Benchmark Development (수집 데이터 기반 경량 이상 데이터 감지 알림 시스템 개발)

  • Woojin Cho;Jae-hoi Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.453-458
    • /
    • 2024
  • Due to global issues such as climate crisis and rising energy costs, there is an increasing focus on energy conservation and management. In the case of South Korea, approximately 53.5% of the total energy consumption comes from industrial complexes. In order to address this, we aimed to improve issues through the 'Shared Network Utility Plant' among companies using similar energy utilities to find energy-saving points. For effective energy conservation, various techniques are utilized, and stable data supply is crucial for the reliable operation of factories. Many anomaly detection and alert systems for checking the stability of data supply were dependent on Energy Management Systems (EMS), which had limitations. The construction of an EMS involves large-scale systems, making it difficult to implement in small factories with spatial and energy constraints. In this paper, we aim to overcome these challenges by constructing a data collection system and anomaly detection alert system on embedded devices that consume minimal space and power. We explore the possibilities of utilizing anomaly detection alert systems in typical institutions for data collection and study the construction process.

A Research on Development Measures of Information Services for Construction Technology (건설기술 정보서비스 구축 방안에 관한 연구)

  • Ok, Hyun;Kim, Jin-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5707-5715
    • /
    • 2015
  • Recently, construction industry has won an increasing number of orders for overseas construction projects, thereby achieving an external growth, but its competiveness is concentrated on the construction execution field. In particular, the plant field occupies most of the entire orders, which are concentrated regionally in the Middle East and Asia. In addition, low-cost orders are frequently caused by excessive competition. But its high value-added construction engineering(Below, CE) field's overseas market share and technological capacity are very low. Also, technological competiveness, in terms of order amount and other factors, is deepening in polarization between large CE companies and small and medium-sized CE firms. It is noted that the existing CE information systems mostly simply accumulate data such as design and specification standards and provide the information thereon to users, and thus have yet to provide the information essential for the CE and support such efforts. This study sought to prepare a system designed for sharing outstanding design documents information necessary for the CE industry, by category of construction so as to support the technological enhancement of the CE field. Toward that end, this study presented measures for constructing the system and services designed to exchange and share the outstanding design documents information and know-how by construction category necessary between ordering agencies and CE companies.

Rolling Motion Simulation in the Time Domain and Ship Motion Experiment for Algorithm Verification for Fishing Vessel Capsizing Alarm Systems (어선전복경보시스템 알고리즘 검증을 위한 어선 횡동요 시험 및 시간영역 횡동요 시뮬레이션)

  • Yang, Young-Jun;Kwon, Soo-Yeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.956-964
    • /
    • 2017
  • This study contributes to deepening understand of the characteristics of fishing vessel rolling motions to improve the development of capsizing alarm systems. A time domain rolling motion simulation was performed. In order to verify capsizing alarm systems, it is necessary to carry out experiments assuming a capsizing situation and perform actual fishing vessel measurements, but these tasks are impossible due to the danger of such a situation. However, in many capsizing accidents, a close connection with rolling motion was found. Accordingly, the rolling motion of a fishing boat, which is the core of a fishing vessel capsizing alarm system, has been accurately measured and a time domain based on a rolling motion simulation has been performed. This information was used to verify the algorithm for a capsizing alarm system. Firstly, the characteristics of rolling motion were measured through a motion experiment. For small vessels such as fishing vessels, it was difficult to interpret viscosity due to analytical methods including CFD and potential codes. Therefore, an experiment was carried out focusing on rolling motion and a rolling mode RAO was derived.

Analysis of Control Performance in Gap Size of MR Damper (MR Damper의 Gap Size에 따른 제어성능 분석)

  • Heo, Gwang Hee;Jeon, Seung Gon;Seo, Sang Gu;Kim, Dae Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • In this study, the flow path width (Gap Size), which is the flow path of fluid, was selected differently among various factors that determine the Ccontrol Force of MR damper, and the change of Control Force was confirmed accordingly. For this purpose, two MR dampers with a Gap Size of 1.0mm and 1.5mm were fabricated, respectively, and dynamic load experiments were conducted according to changes in applied current and vibration conditions The experimental results showed that the minimum Control Force was 3.2 times higher than 1.5mm in the case of 1.0mm Gap Size, and the maximum Control Force was 2.3 times higher than 1.5mm in the case of 1.0mm Gap Size. In addition, the increased width of the Control Force according to applied current was 34N for Gap Size 1.0mm, and 12.7N for Gap Size 1.5mm. As the gap Size increased, the overall Control Force and the increase in the Control Force by the applied current decreased. Next, the dynamic range, which is a performance evaluation index of the semi-active Control device, was 2.3 on average under 1.0mm condition and 2.8 on average under 1.5mm condition, confirming the possibility of utilization as a semi-active Control device.