• Title/Summary/Keyword: 소형펀치-크리프

Search Result 22, Processing Time 0.018 seconds

Creep life Prediction for W.M. of High Cr-Mo Steel using Modified Power-law (고 Cr-Mo강의 수정멱수법칙을 이용한 W.M. 크리프 수명예측)

  • An, Jong-Kyo;Yu, Hyo-Sun;Yang, Sung-Mo;Kang, Hee-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.951-956
    • /
    • 2008
  • The high temperature creep properties of the generating plant's high temperature tube, pipe and header and such are very significant in accordance with long-time exposure to the high temperature and pressure environment. Not only this, but as the welding procedure is compulsory for the cohesion of components, the creep properties regarding the local microstructures of steel weldment are very important. In order to understand the creep properties regarding the local microstructures of steel weldment, the SP-Creep test which is easy to get sample from the field component was conducted. The local microstructure of steel weldment, that is, W.M. and B.M.'s microstructures were observed using the SEM. The rupture time of W.M. was longer as 110 % averagely in a same condition, which is the consequence of the difference of the microstructure. Each lethargy coefficient of B.M. and W.M. is evaluated by the relation among the temperature, load and the rupture time from SP-Creep Test. The life estimation equation can be induced by the transformation of Power-law. B.M. and W.M. for each $550\;^{\circ}C$ and $575\;^{\circ}C$, the very similar to normal temperature of the domestic thermal power generation in working, are estimated.

Creep Damage Evaluation of High Temperature Material Using Small Punch Test Method (소형펀치실험법을 이용한 고온재료의 크리프 손상 평가)

  • Yu, Hyo-Sun;Lee, Song-In;Baek, Seung-Se;Na, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.265-268
    • /
    • 2000
  • In this study, a small punch creep (SP-Creep) test using miniaturized specimen has been described for the development of the new creep test method for high temperature structural components such as headers and tubes of boiler, turbine casing and rotor, and reactor vessel. The SP-Creep testing technique has been applied to 1Cr-0.5Mo steel used widely as boiler header material and the creep test temperature are varied at $550^{\circ}C{\sim}600^{\circ}C$. From the experimental results, e.g. SP-Creep curve behaviors, the creep rate in steady state and creep rupture life with test temperature and load, the load exponential value(n, m), the activation energy($Q_{spc}$), the Monkman-Grant relation and the creep life assessment equation etc., it can be summarized that the SP-Creep test may be a useful test method to evaluate the creep properties of the heat resisting material such as boiler header.

  • PDF