• Title/Summary/Keyword: 소형정밀모터

Search Result 43, Processing Time 0.016 seconds

Process Design of Trimming to Improve the Sheared-Edge of the Vehicle Door Latch based on the FE Simulation and the Taguchi Method (유한요소해석 및 다구찌법을 이용한 자동차 도어 래치의 전단면 품질 향상을 위한 트리밍 공정 설계)

  • Lee, Jung-Hyun;Lee, Kyung-Hun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.483-490
    • /
    • 2016
  • Automobile door latch is a fine design and assembly techniques are required in order to produce them in a small component assembly shape such as a spring, injection products, a small-sized motor. The door latch is fixed to not open the door of the car plays an important role it has a direct impact on the driver's safety. In this study, during trimming of the terminals of the connector main components of the car door latch, reduce rollover and conducted a research to find a suitable effective shear surface. Using the Taguchi method with orthogonal array of Finite Element Analysis and optimal Design of Experiments were set up parameters for the shear surface quality of the car door latch connector terminals. The design parameters used in the analysis is the clearance, the radius, and the blank holding force, the material of the connector terminal is a C2600. Trimming process optimum conditions suggested by the analysis has been verified by experiments, the shear surface shape and dimensions of a final product in good agreement with forming analysis results.Taguchi method from the above results in the optimization for the final rollover and effective shear surface improved for a vehicle door latch to the connector terminal can be seen that the applicable and useful for a variety of metal forming processes other than the trimming process is determined to be applicable.

A Design Method of Three-phase IPMSM and Clamping Force Control of EMB for High-speed Train (고속철도차량의 EMB 적용을 위한 3상 IPMSM의 설계 및 제동압부력 제어)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Kwak, Min-ho;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.578-585
    • /
    • 2018
  • This paper proposes a design method for a 3-phase interior permanent magnet synchronous motor (IPMSM) and clamping force control method for an electro-mechanical brake (EMB) using co-simulation for a high-speed train (HST). A traditional pneumatic brake system needs much space for the compressor, brake reservoir, and air pipe. However, an EMB system uses up to 50% less space due to the use of a motor and electric wires for controlling the brake caliper. In addition, it can reduce the latency time for brake control because of the fast response and precise control. A train that has many brakes is advantageous for safety because of the control by sharing the braking force. In this paper, a driving method for a cam-shaft-type EMB is modeled. It is different from the ball-screw-type brakes that are widely used in automobiles. In addition, a co-simulation method is proposed using JMAG and Matlab/Simulink. The IPMSM was designed and analyzed with the JMAG tool, and the control system was simulated using Matlab/Simulink. The effectiveness of the co-simulation results of the mechanical clamping force and braking force was verified by comparison with the clamping force specifications of a HEMU-430X HST.

Development of the paper bagging machine for grapes (휴대용 포도자동결속기 개발연구)

  • Park, K.H.;Lee, Y.C.;Moon, B.W.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.11 no.1
    • /
    • pp.79-94
    • /
    • 2009
  • The research project was conducted to develop a paper bagging machine for grape. This technology was aimed to highly reduce a labor for paper bagging in grape and bakery. In agriculture labor and farm population has rapidly decreased since 1980 in Korea so there was so limit in labor. In particular there is highly population in women and old age at rural area and thus labor cost is so high. Therefore a labor saving technology in agricultural sector might be needed to be replaced these old age with mechanical and labor saving tool in agriculture. The following was summarized of the research results for development of a paper bagging machine for grape. 1. Development of a new paper bagging machine for grape - This machine was designed by CATIA VI2/AUTO CAD2000 programme. - A paper bagging machine was mechanically binded a paper bag of grape which should be light and small size. This machine would be designed for women and old age with convenience during bagging work at the field site. - This machine was manufactured with total weight of less than 350g. - An overage bagging operation was more than 99% at the actual field process. - A paper bagging machine was designed with cartridge type which would be easily operated between rows and grape branches under field condition. - The type of cartridge pin was designed as a C-ring type with the length of 500mm which was good for bagging both grape and bakery. - In particular this machine was developed to easily operated among vines of the grape trees. 2. Field trials of a paper bagging machine in grape - There was high in grape quality as compared to the untreated control at the application of paper bagging machine. - The efficiency of paper bagging machine was 102% which was alternative tool for the conventional. - The roll pin of paper bagging machine was good with 5.3cm in terms of bagging precision. - There was no in grape quality between the paper bagging machine and the conventional method. - Disease infection and grape break was not in difference both treatments.