• Title/Summary/Keyword: 소하천유역

Search Result 174, Processing Time 0.03 seconds

Analysis of Monitoring Characteristics of Small Stream for TMDL (오염총량관리를 위한 소하천 모니터링 자료의 특성 분석)

  • Ha, Don-Woo;Park, Seung-Ho;Joo, Sungmin;Lee, Gi-Soon;Baek, Jong-Hun;Jung, Kang-Young;Lee, Youngjea;Kim, Kyunghyun;Kim, Young-Suk
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.503-513
    • /
    • 2018
  • In order to continuous watershed management and improve water quality at Yeong-san river system, we analyzed and evaluated data on the monitoring of small stream in city and county boundaries within the watershed. In-period monitoring is estimated to be more frequent in the second quarter than the first quarter, so it should be considered when evaluating the target water quality by setting the target water quality. A small stream in the Yeong-san river system has higher concentration in the downstream area than the upstream area. As a result of calculating the load of the measuring point, Y.b B3(Pungyeongjeongcheon) and Y.b E1(Sampocheon) were high. The result of correlation analysis by monitoring point in order to evaluate the correlation between BOD and T-P items, BOD was highly correlated with COD and TOC, and was affected by emission of pollutants related to organic matter. T-P was highly correlated with SS and COD, and was affected by rainfall. This study will provide basic data and direction for designing efficient and scientific method for water quality management by analyzing accumulated water quality data by conducting long-term monitoring.

Application of EOC Images to Developed the GIUH (지형학적순간단위유랑도 분석을 위한 EOC 스테레오 영상 활용)

  • Choi, Hyun;Kang, In-Joon;Hong, Sun-Heun
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.91-102
    • /
    • 2004
  • This paper reflects the estimation of using the EOC(Electro-optical Camera) images supporting GIUH(geomorphological instantaneous unit hydrograph) approach. We have analyzed GIUH in its density and frequency distribution by creating a DEM(digital elevation model) for the sub basin produced from the EOC images and examined topographical and hydrological application possibility of the EOC images. In this process, we have topographical basin characteristic analysis that use the remote sensing technique analyzing the DEM creation process of the EOC stereo images by studying the basic topographical hydrology analysis about abstraction technique since it is flirty complex and is more time-consuming than other method. we executed statistical analysis of a basin size and river length using the frequency function after divided lattice spacing applied have to the sub river basin from the image data and the digital map into 10m intervals ranging from 10m to 100m. After comparing and examining the peak and time to peak of the GIUH, we proceeded with a comparative analysis by lattice concerning the topographical divergence rate, area ratio, length ratio. Accumulating the peak and time to peak of the GIUH is altered to non-linear form in accordance to lattice dimension as well as basin factor. It was proved that the lattice dimension is one of the important factors about the peak and time to peak of the GIUH.

A Determination of the Maximum Potential Runoff of Small Rural Basins (소하천(小河川) 유역(流域)의 잠재유출량(潛在流出量) 결정(決定))

  • Yoon, Yong Nam;Hong, Chang Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.53-62
    • /
    • 1982
  • An effort of preliminary type has been made to develope a practical method for the waterway area determination of a drainage outlet in rural or agricultural areas. The Seoul meteorological station was selected as tile index station, and the maximum rainfalls-duration-frequency (R-D-F) relation of short-time intense rainfalls was first established. A frequency analysis of the daily rainfalls for the 75 stations selected throughout the country resulted the 50-year daily rainfall for each station. The rainfall factor, which is defined here as the ration of 50-year daily rainfalls of individual station and the index station, was determined for the 8 climatological regions divided in this study. Following the US SCS method the runoff number of a watershed was given based on the soil type, land-use pattern, and the surface treatment. With this runoff number and the R-D-F relationship the runoff factors for the index station were computed and hence a nomogram could be drawn which makes it possible to determine the runoff factor for a given rainfall number and a rainfall of specific duration and frequency. With this done, the potential runoff of a watershed for a given rainfall duration could be calculated, based on the unit hydrograph theory, by multiplying the rainfall factor, the runoff factor, and the drainage area of the watershed under consideration. Then, the maximum runoff potential was determined by varying the rainfall duration and finding out the duration which results the peak discharge of a gived return period.

  • PDF

Study on applicability of fractal theory to cohesive sediment in small rivers (프랙탈 이론의 소하천 점착성 유사 적용에 관한 연구)

  • Lim, Byung Gu;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.887-901
    • /
    • 2016
  • Cohesive sediments form flocs through the flocculation process. The size and density of floc are variable whereas those of a fine sediment are always assumed to be constant. The settling velocity, one of main factors of sediment transport, is determined by size and density of particle. Therefore, the flocculation process plays an important role in transport of cohesive sediment. It is of great difficulty to directly measure the density of floc in the field due to technical limitation at present. It is a popular approach to estimate the density of floc by applying the fractal theory. The main assumption of fractal theory is the self-similarity. This study aims to examine the applicability of fractal theory to cohesive sediment in small rivers of Korea. Sampling sediment has been conducted in two different basins of Geum river and Yeongsan river. The results of settling experiments using commercial camera show that the sediment in Geum river basin follows the main concept of fractal theory whereas the sediment in Yeongsan river basin does not have a clear relationship between floc size and fractal dimension. It is known from this finding that the fractal theory is not easily applicable under the condition that the cohesive sediment includes the high content of organic matter.

Study of the Saemangeum District Flood Level after Completion of Saemangeum Master Plan (새만금종합개발계획 완료 후 새만금 지구 홍수위 검토)

  • Jeong, Seok Il;Ryu, Kwang Hyun;Lee, Seung Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.248-248
    • /
    • 2018
  • 새만금 종합개발계획(정부, 2011)에 따른 내부개발의 완료시점은 2030년이며, 방수제 공사와 준설 등과 같이 만경강 및 동진강 유역 내 흐름을 변화시킬 수 있는 공사를 포함하고 있으므로 현재와 2030년의 하천 및 호의 수리특성은 다를 것이라 예상된다. 2030년까지 준설상황 등을 예측하여 반영하는 것은 사실상 불가능하기 때문에 새만금 종합개발계획에서 제시하고 있는 내부개발의 완료시점을 기준으로 홍수사상을 모의하였다. 새만금 호의 물리적인 변화는 수리특성의 변화로 이어질 수 있으며, 이는 상류지역으로 전파가 될 수 있으므로 호내 뿐만 아니라 만경강과 동진강 전역에 대한 홍수시의 수리특성을 검토하였다. 새만금 호와 연결된 만경강과 동진강의 설계홍수량은 대부분의 구간에서 100년 빈도이기 때문에 본 연구에서는 100년 빈도 홍수사상에 대한 분석을 기초로 홍수위 검토를 수행하였고, RCP8.5 시나리오를 적용한 100년 빈도 홍수량과 500년 빈도 홍수량에 대한 추가적인 연구를 수행하였으며, 이 결과를 토대로 취약지구 분석 및 대책 등을 제시하였다. 수치모의는 Delft3D를 이용하였으며, 새만금 유역의 동진강 지구의 실측치와 비교함으로써 모델의 적용성을 검증하였다. 서해안 조위 특성상 새만금 방조제는 조위 영향이 크므로, 이에 본 연구에서는 외조위의 특성을 고려하기 위해 새만금 유역 주변의 12개 조화상수(tidal harmonic constant)를 이용하여 조위에 대한 모의를 별도로 수행하고, 이 결과를 배수갑문의 경계조건으로 이용하였다. 상류 경계조건은 하천기본계획상에 제시된 하천은 이를 이용하였으며, 그 외의 소하천은 유역면적을 이용한 계산법을 사용하여, 선형적 면적 비유량(Specific Discharge, SD) 방법을 적용하여 본류의 유량에 부가하는 방식으로 수행하였다. 수치해석 결과, 준설 구간의 수위는 전반적으로 저하되었으며, 거리에 따른 수면의 경사를 분석한 결과 기존의 하천구역이 준설 등으로 인하여 호수의 특성으로 변화된 것으로 확인하였다. 본 연구에서 취약지구는 홍수위가 제방고의 약 80% 이상 되는 지역으로 결정하였으며, 이를 토대로 취약지구 분석을 수행한 결과 기존 100년 빈도에서 1지점, RCP 8.5 시나리오가 적용된 100년 빈도에서 88지점, 500년 빈도에서 125지점이 잠재적인 치수 위험이 있는 것으로 파악되었다. 기존의 1차원 연구결과와는 차이가 있는 부분은, 다수의 취약지구가 만곡부 또는 합류부 인근에 위치한 것이다. 향후 이러한 상대적인 치수 취약지점에 대해 정밀하고 국부적인 연구를 수행하여 정확한 홍수위 예측을 수행해야 할 것이다.

  • PDF

The Influence of Land Use on Water Quality in the Tributary of the Yeongsan River Basin (영산강수계 소하천 유역의 토지이용이 하천수질에 미치는 영향 분석)

  • Jung, Jae-Woon;Lim, Byung-Jin;Cho, So-Hyun;Choi, Jin-Hee;Song, Kwang-Duck;Ha, Don-Woo;Kim, Hae-Sung;Park, Seung-Ho;Hwang, Tae-Hee;Jung, Soo-Jung;Lee, Dong-Jin;Kim, Kap-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.412-419
    • /
    • 2012
  • This study assessed the impacts of land use types on water quality in the tributary of the Yeongsan river basin. Temporal changes in water quality parameters (BOD, COD, TOC, T-P, T-N, SS) were investigated. 13 water sampling sites were selected; they were then collected and analyzed according to the standard method. The results showed that water quality parameters of the study sites ranged as follows : BOD, from 0.3 to $21.9mg\;L^{-1}$ (mean $3.3mg\;L^{-1}$); COD, from 1.0 to $38.0mg\;L^{-1}$ ($6.4mg\;L^{-1}$); TOC, from 0.6 to $20.0mg\;L^{-1}$ ($4.5mg\;L^{-1}$); T-P, from 0.009 to $1.973mg\;L^{-1}$ ($0.144mg\;L^{-1}$); T-N, from 0.6 to $17.1mg\;L^{-1}$ (mean $3.5mg\;L^{-1}$); SS, from 0.3 to $292.0mg\;L^{-1}$ ($20.3mg\;L^{-1}$). Generally, the paddy and upland dominated region had high concentrations of water quality parameters, whereas the forest dominated region had low concentrations. In addition, water quality parameters were positively correlated with paddy and upland, whereas the parameters were negatively correlated with forest. The result implies that paddy and upland are the dominant factors leading to stream pollution in the study sites, while a higher percentage of forest area contributes to improved water quality. Therefore, it is important to manage paddy and upland in order achieve efficient management of water quality.

A Research on the Probabilistic Calculation Method of River Topographic Factors (하천 지형인자의 확률론적 산정 방식 연구)

  • Choo, Yeon-Moon;Ma, Yun-Han;Park, Sang-Ho;Sue, Jong-Chal;Kim, Yoon-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.509-516
    • /
    • 2020
  • Since the 1960s, many rivers have been polluted and destroyed due to river repair projects for economic development and the covering of small rivers due to urbanization. Many studies have analyzed rivers using measured river topographic factors, but surveying is not easy when the flow rate changes rapidly, such as during a flood. In addition, the previous research has been mainly about the cross section of a river, so information on the longitudinal profile is insufficient. This research used informational entropy theory to obtain an equation that can calculate the average river slope, river slope, and river longitudinal elevation for a river basin in real time. The applicability was analyzed through comparison with measured data of a river's characteristic factors obtained from a river plan. The parameters were calculated using informational entropy theory, nonlinear regression analysis, and actual data. The longitudinal elevation entropy equation for each stream was then calculated, and so was the average river slope. All of the values were over 0.96, so it seems that reliable results can be obtained when calculating river characteristic factors.

Flood Forecasting and Warning Using Neuro-Fuzzy Inference Technique (Neuro-Fuzzy 추론기법을 이용한 홍수 예.경보)

  • Yi, Jae-Eung;Choi, Chang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.341-351
    • /
    • 2008
  • Since the damage from the torrential rain increases recently due to climate change and global warming, the significance of flood forecasting and warning becomes important in medium and small streams as well as large river. Through the preprocess and main processes for estimating runoff, diverse errors occur and are accumulated, so that the outcome contains the errors in the existing flood forecasting and warning method. And estimating the parameters needed for runoff models requires a lot of data and the processes contain various uncertainty. In order to overcome the difficulties of the existing flood forecasting and warning system and the uncertainty problem, ANFIS(Adaptive Neuro-Fuzzy Inference System) technique has been presented in this study. ANFIS, a data driven model using the fuzzy inference theory with neural network, can forecast stream level only by using the precipitation and stream level data in catchment without using a lot of physical data that are necessary in existing physical model. Time series data for precipitation and stream level are used as input, and stream levels for t+1, t+2, and t+3 are forecasted with this model. The applicability and the appropriateness of the model is examined by actual rainfall and stream level data from 2003 to 2005 in the Tancheon catchment area. The results of applying ANFIS to the Tancheon catchment area for the actual data show that the stream level can be simulated without large error.

Analysis of Downstream Water Quality Improvement by Agricultural Reservoir Release Using QUAL2K (QUAL2K 모형을 이용한 농업용 저수지 방류에 따른 하류하천 수질개선효과 분석)

  • Kim, Dong Hyeon;Kim, Sang Min
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.205-216
    • /
    • 2016
  • The purpose of this study was to analyze the water quality improvement effect by providing the environmental flows from agricultural reservoir using QUAL2K model. The Bonghyun reservoir, located in Hai-myun, which is in the city of Gosung in the Gyeongnam province, was selected for study area. The stream monitoring was conducted 24 times from 2011 to 2013 and the water quality was monitored in 6 stations including reservoir. Reservoir operation was simulated to determine the environmental flow supply amount from March to October with the constraint that environmental flow supply was restrained when the storage of reservoir was below the one-third of effective storage. The QUAL2K model was selected for water quality simulation. Simulated water quality were compared with the observed for BOD, SS, TN, and TP. R2 were ranged 0.8508~0.9913, RMSE were 0.005~0.52 mg/L, and NSE were 0.949~0.998 for water quality items, respectively. The QUAL2K model simulation results indicated that the water quality improvement effect by providing the environmental flows(3,000 ton/day) were 9.2% for BOD, 21.0% for SS, -9.0% for TN, -2.4% for TP, respectively.

Flood Runoff Computation for Mountainous Small Basins using WMS Model (WMS 모형을 활용한 산지 소하천 유역의 유출량 산정)

  • Chang, Hyung Joon;Lee, Jung Young;Lee, Hyo Sang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.9-15
    • /
    • 2021
  • The frequency of flash floods in mountainous areas is increasing due to the abnormal weather that occurs increasingly in the recent, and it causes human and material damages is increasing. Various plans for disaster mitigation have been established, but artificial plans such as raising embankment and dredging operation are inappropriate for valleys and rivers in national parks that prioritize nature protection. In this study, flood risk assessment was conducted for Gyeryongsan National Park in Korea using the WMS (Watershed Modeling System)which is rainfall runoff model for valleys and rivers in the catchment. As the result, it was simulated that it is flooding in three sub-catchments (Jusukgol, Sutonggol, Dinghaksa) of a total in Gyeryongsan National Park when rainfall over the 50 years return period occurs, and it was confirmed that the risk of trails and facilities what visitors are using was high. The risk of trails in national parks was quantitatively presented through the results of this study, and we intend to present the safe management guidelines of national parks in the future.