Recently, various researches on medical image generation have been suggested, and it becomes crucial to accurately evaluate the quality and diversity of the generated medical images. For this purpose, the expert's visual turing test, feature distribution visualization, and quantitative evaluation through IS and FID are evaluated. However, there are few methods for quantitatively evaluating medical images in terms of fidelity and diversity. In this paper, images are generated by learning a chest CT dataset of non-small cell lung cancer patients through DCGAN and PGGAN generative models, and the performance of the two generative models are evaluated in terms of fidelity and diversity. The performance is quantitatively evaluated through IS and FID, which are one-dimensional score-based evaluation methods, and Precision and Recall, Improved Precision and Recall, which are two-dimensional score-based evaluation methods, and the characteristics and limitations of each evaluation method are also analyzed in medical imaging.
The majority of IoT devices already employ AIoT, however there are still numerous issues that need to be resolved before AI applications can be deployed. In order to more effectively distribute IoT edge resources, this paper propose a machine learning-based approach to managing IoT edge resources. The suggested method constantly improves the allocation of IoT resources by identifying IoT edge resource trends using machine learning. IoT resources that have been optimized make use of machine learning convolution to reliably sustain IoT edge resources that are always changing. By storing each machine learning-based IoT edge resource as a hash value alongside the resource of the previous pattern, the suggested approach effectively verifies the resource as an attack pattern in a distributed AIoT context. Experimental results evaluate energy efficiency in three different test scenarios to verify the integrity of IoT Edge resources to see if they work well in complex environments with heterogeneous computational hardware.
This study is an example of the education of block coding and physical computing teaching tool for preservice teachers at the college of education. The students were familiar with coding and improved their coding skills in solving various problems through 'Entry' that support block coding. In addition, the students configured the computing system with various input / output devices of the physical computing teaching tool and controlled things through programming and produced the educational portfolio to experience the whole process of problem analysis, design, implementation, and testing in coding. We applied Flow based coding and Pair programming as the teaching methods, and the results of the survey to measure the effectiveness of the study show that students have a good understanding of the entry and physical computing teaching tool and using the combination of the entry and physical computing teaching tool were more effective in learning than the Entry-only coding. In addition, it was confirmed that the effect of Pair programming applied in the physical computing teaching tool.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.16
no.3
/
pp.161-166
/
2023
In recent years, new and variant hacking of binary codes has increased, and the limitations of techniques for detecting malicious codes in source programs and defending against attacks are often exposed. Advanced software security vulnerability detection technology using machine learning and deep learning technology for binary code and defense and response capabilities against attacks are required. In this paper, we propose a malware clustering method that groups malware based on the characteristics of the taint information after entering dynamic taint information by tracing the execution path of binary code. Malware vulnerability detection was applied to a three-layered Few-shot learning model, and F1-scores were calculated for each layer's CPU and GPU. We obtained 97~98% performance in the learning process and 80~81% detection performance in the test process.
KIPS Transactions on Software and Data Engineering
/
v.11
no.3
/
pp.107-114
/
2022
In this paper, we have enhanced the risk prediction of hypertension using the feature selection method in the Korean National Health and Nutrition Examination Survey (KNHANES) database of the Korea Centers for Disease Control and Prevention. The study identified various risk factors correlated with chronic hypertension. The paper is divided into three parts. Initially, the data preprocessing step of removes missing values, and performed z-transformation. The following is the feature selection (FS) step that used a factor analysis (FA) based on the feature selection method in the dataset, and feature importance (FI) and multicollinearity analysis (MC) were compared based on FS. Finally, in the predictive analysis stage, it was applied to detect and predict the risk of hypertension. In this study, we compare the accuracy, f-score, area under the ROC curve (AUC), and mean standard error (MSE) for each model of classification. As a result of the test, the proposed MC-FA-RF model achieved the highest accuracy of 80.12%, MSE of 0.106, f-score of 83.49%, and AUC of 85.96%, respectively. These results demonstrate that the proposed MC-FA-RF method for hypertension risk predictions is outperformed other methods.
Journal of the Korea Society of Computer and Information
/
v.28
no.7
/
pp.47-55
/
2023
This paper presents a method for predicting the threat index of combat systems using Gradient Boosting Regressors and Support Vector Regressors among machine learning models. Currently, combat systems are software that emphasizes safety and reliability, so the application of AI technology that is not guaranteed to be reliable is restricted by policy, and as a result, the electrified domestic combat systems are not equipped with AI technology. However, in order to respond to the policy direction of the Ministry of National Defense, which aims to electrify AI, we conducted a study to secure the basic technology required for the application of machine learning in combat systems. After collecting the data required for threat index evaluation, the study determined the prediction accuracy of the trained model by processing and refining the data, selecting the machine learning model, and selecting the optimal hyper-parameters. As a result, the model score for the test data was over 99 points, confirming the applicability of machine learning models to combat systems.
Facial expression is an important means of representing characteristics in movies and animations, and facial capture technology can support the production of facial animation for 3D characters more quickly and effectively. Blendshape techniques are the most widely used methods for producing high-quality 3D face animations, but traditional blendshape often takes a long time to produce. Therefore, the purpose of this study is to achieve results that are not far behind the effectiveness of traditional production to reduce the production period of blend shape. In this paper, in order to make a blend shape, the method of using the cross-model to convey the blend shape is compared with the traditional method of making the blend shape, and the validity of the new method is verified. This study used kit boy developed by Unreal Engine as an experiment target conducted a facial capture test using two blend shape production techniques, and compared and analyzed the facial effects linked to blend shape.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.259-262
/
2022
정보화 시대 스마트폰이 대중화되고 실시간 인터넷 사용이 가능해짐에 따라, 본인을 식별하기 위한 사용자 인증이 필수적으로 요구된다. 대표적인 사용자 인증 기술로는 아이디와 비밀번호를 이용한 비밀번호 인증이 있지만, 키보드로부터 입력받는 이러한 인증 정보는 시각 장애인이나 손 사용이 불편한 사람, 고령층과 같은 사람들이 많은 서비스로부터 요구되는 아이디와 비밀번호를 기억하고 입력하기에는 불편함이 따를 뿐만 아니라, 키로거와 같은 공격에 노출되는 문제점이 존재한다. 이러한 문제점을 해결하기 위하여, 자신의 신체의 특징을 활용하는 생체 인증이 대두되고 있으며, 그중 목소리로 사용자를 인증한다면, 효과적으로 비밀번호 인증의 한계점을 극복할 수 있다. 이러한 화자 인식 기술은 KT의 기가 지니와 같은 음성 인식 기술에서 활용되고 있지만, 목소리는 위조 및 변조가 비교적 쉽기에 지문이나 홍채 등을 활용하는 인증 방식보다 정확도가 낮고 음성 인식 오류 또한 높다는 한계점이 존재한다. 상기 목소리를 활용한 사용자 인증 기술인 화자 인식 기술을 활용하기 위하여, 사용자 목소리를 학습시켰으며, 목소리의 주파수를 추출하는 MFCC 알고리즘을 이용해 테스트 목소리와 정확도를 측정하였다. 그리고 악의적인 공격자가 사용자 목소리를 흉내 내는 경우나 사용자 목소리를 마이크로 녹음하는 등의 방법으로 획득하였을 경우에는 높은 확률로 인증의 우회가 가능한 것을 검증하였다. 이에 따라, 더욱 효과적으로 화자 인식의 정확도를 향상시키기 위하여, 본 논문에서는 목소리에 잡음을 섞는 방법으로 화자를 인식하는 방안을 제안한다. 제안하는 방안은 잡음이 정확도에 매우 민감하게 반영되기 때문에, 기존의 인증 우회 방법을 무력화하고, 더욱 효과적으로 목소리를 활용한 화자 인식 기술을 제공할 것으로 사료된다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.3
/
pp.177-182
/
2024
In this paper, the purpose of this paper is to predict and prevent the risk of crowd concentration in advance for possible future crowd accidents based on the Itaewon crush accident in Korea on October 29, 2022. In the case of a single CCTV, the administrator can determine the current situation in real time, but since the screen cannot be seen throughout the day, objects are detected using YOLOv4, which learns images taken with CCTV angle, and safety accidents due to crowd concentration are prevented by notification when the number of clusters exceeds. The reason for using the YOLO v4 model is that it improves with higher accuracy and faster speed than the previous YOLO model, making object detection techniques easier. This service will go through the process of testing with CCTV image data registered on the AI-Hub site. Currently, CCTVs have increased exponentially in Korea, and if they are applied to actual CCTVs, it is expected that various accidents, including accidents caused by crowd concentration in the future, can be prevented.
How can new media devices and networks provide an effective response to the world's growing sector of cultural and historically-minded travelers? This study emerged from the question of how mobile handsets can change the nature of cultural and historical tourism in ubiquitous city environments. As wireless network and mobile IT have rapidly developed, it becomes possible to deliver cultural and historical information on the site through mobile handset as a tour guidance system. The paper describes the development of a new type of mobile tourism platform for site-specific cultural and historical information. The central objective of the project was to organize this cultural and historical walking tour around the mobile handset and its unique advantages (i.e. portability, multi-media capacity, access to wireless internet, and location-awareness potential) and then integrate the tour with a historical story and role-playing game that would deepen the mobile user's interest in the sites being visited, and enhance his or her overall experience of the area. The project was based on twelve locations that were culturally and historically significant to Korean War era in Busan. After the mobile tour game prototype was developed for this route, it was evaluated at the 10th PIFF (Pusan International Film Festival). After use test, some new strategies for developing mobile "edutainment content" to deliver cultural historical contents of the location were discussed. Combining 'edutainment' with a cultural and historical mobile walking tour brings a new dimension to existing approaches of the tourism and mobile content industry.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.