• Title/Summary/Keyword: 소음 방향

Search Result 487, Processing Time 0.029 seconds

Heat Exchangers for Refrigeration and Air Conditioning Equipment (냉동공조용 열교환기)

  • 오후규
    • Journal of the KSME
    • /
    • v.35 no.9
    • /
    • pp.816-828
    • /
    • 1995
  • 냉동공조용 열교환기의 종류, 특징, 기술개발 동향, 전망 등에 대해 요약한 결과를 정리하면 다 음과 같다. (1) 암모니아 냉매가 다시 각광을 받음에 따라 응축기의 형식도 크게 변하고 있다. 이러한 변화로 핀 튜브를 사용한 횡형, 금속용착형 플레이트 식, 플레이트 핀 식의 응축기들이 암모니아 용으로 적용되기 시작하고 있다. (2) 암모니아 냉동장치는 현재에도 많이 적용되고 있으나 대부분 중앙 집중식 천정증발기나 강관 제 유닛 쿨러를 사용하고 있다. 그러나 최근 기술의 발전과 더불어 알루미늄 관 알루미늄 핀 증발기가 개발됨에 따라 암모니아 냉매도 프레온 냉매와 마찬가지로 건식, 분산식으로 적용되게 되었으며 이 분야의 기술개발이 요청된다. (3) 열교환기의 연구 방향은 에너지 절약, 공간 절약에 기여하면서도 성능향상을 이룩할 수 있는 기술개발, 그리고 소음이 적은 기기 제조 기술이 요망된다. 또한, 착상에 대한 기술적 대책, 근 본적 대책에 대한 대비가 요망되며, 기존 냉매에 대한 대체 냉매용 최적 열교환기에 대한 적극적 연구가 요망된다. (4) 제한된 에너지 자원, 지구환경, 열악한 우리나라의 에너지 사정 등을 고려할 때 냉동공조용 열교환기의 성능 향상에 대한 국가와 일반 소비자들의 기대는 더욱 증가하리라 예상된다. 이들 요구를 만족시키기 위해서는 냉동공조용 열교환기의 성능 향상, 열교환기의 제작에 필요한 자 원의 절약, 생산성 향상, 설치장소와 관련한 효율적인 공간활용, 열교환기 자체 소음의 최소화 등의 방면에 착실한 연구 개발이 있어야 할 것이다.

  • PDF

Vibration Analysis of Cracked Rotor (균열 회전체의 진동해석)

  • Jun, Oh-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.925-934
    • /
    • 2005
  • The dynamic response due to the unbalance and crack and the quasi-static response due to gravity are analytically derived based on the complex transfer matrix. The additional slope is expressed as function of the bending moment at crack position based on the fracture mechanics concept, and inversely the bending moment is expressed as function of the additional slope at the crack position. At each angle step during the shaft revolution, the additional slope and bending moment are calculated by an iterative method. The transient behavior is considered by introducing Fourier series expansion concept for the additional slope. Simulation is carried out for a simple rotor similar to those available in the literature and comparison of the basic crack behavior is shown. Using the additional slope, the cracked rotor behavior is explained with the crack depth increased: the magnitude of the additional slope increases and the closed crack duration during a revolution decreases as the crack depth increases. The direction of unbalance is also shown as a factor to affect the crack breathing. Whirl orbits are shown near the sub-critical speed ranges of the rotor.

  • PDF

Determination of Specimen Geometry for Identification of the Complex Modulus of Viscoelastic Materials (점탄성재료의 복소탄성계수 규명을 위한 시편 크기의 결정)

  • Kang, Kee-Ho;Sim, Song;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.133-138
    • /
    • 1991
  • 일반적으로 고무를 비롯한 점탄성재료는 형상 및 크기를 적절히 조절함으로 써 한 방향 이상으로의 원하는 스프링상수를 얻을 수 있으며, 금속에 비하여 내부 마찰에 의한 에너지 발산이 매우 크기 때문에 강제 진동시의 진폭저감 및 충격에 따른 자유진동의 감쇠에 널리 이용되고 있다. 이와 같은 진동감쇠 에 점탄성재료를 효과적으로 사용하기 위해서는 복소탄성계수 즉, 탄성계수 와 손실계수를 정확하게 알아내는 것이 필요하다. 점탄성재료의 복소탄성계 수는 주파수, 온도 및 변형률등에 따라 변하므로 이와 같은 사용조건의 함수 로 구해야 한다. 복소탄성계수를 실험적으로 구하는 방법은 여러가지가 있으 며 실험의 용이성과 관심대상에 따라 적절한 방법을 선택하게 된다. 본 연구 에서는 주파수변화에 따른 복소탄성계수를 임피던스법으로 집중질량 모형을 이용하여 구하려고 할 때, 실험데이타로부터 보다 정확한 결과를 얻기 위하 여 적절한 시편의 크기를 결정하는 방법을 제시하고자 한다. 이를 위해서 시 편내의 파동전달효과와 포아송비와 관련된 양단제한효과 그리고 정하중시 압축변형에 대한 시편의 좌굴등을 고려하여 이론적으로 해석하였으며 실험 적으로도 검증하였다.

  • PDF

Wind Response Control Performance of a Two-way Tuned Liquid Mass Damper Using Real-Time Hybrid Shaking Table Testing Method (실시간 하이브리드 진동대 실험법에 의한 양방향 TLMD의 풍응답 제어성능평가)

  • Heo, Jae-Sung;Lee, Sung-Kyung;Lee, Sang-Hyun;Park, Eun-Churn;Kim, Hong-Jin;Jo, Bong-Ho;Jo, Ji-Seong;Kim, Dong-Young;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.189-194
    • /
    • 2007
  • An experimental real-time hybrid method, which implements the wind response control of a building structure with only a two-way TLMD, is proposed and verified through a shaking table test. The building structure is divided into the upper experimental TLMD and the lower numerical structural part. The shaking table vibrates the TLMD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an wind-load input at its base. The results show that the conventional method can be replaced by the proposed methodology with a simple installation and accuracy for evaluating the control performance of a TLMD.

  • PDF

Estimation of Vibrational Power Transmitted from Vibration Source to Supporting Structure - Estimation and Measurement of Vibrational Power Transmitted in the Horizontal Direction - (진동원으로부터 지지구조물에 전달되는 진동 파워의 추정 - 수평방향으로 전달되는 진동파워의 추정 및 측정 -)

  • 김재철;주진수
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1137-1143
    • /
    • 1998
  • This paper describes the method to measure of the vibrational power transmitted from the vibration source to the supporting structure in the horizontal direction. Generally, it is impossible to measure horizontal forces at the coupling points. However. the vibrational Power transmitted in the horizontal direction can be measured by using indirect method that is based on the mechanical impedance and velocities at the coupling points. We proposed the method to estimate the vibrational power when the vibration source and supporting structure cannot be separated. In this paper. the vibrational power transmitted in the horizontal direction is also estimated by using this method. The estimated and measured results of the mobilities at the coupling point and vibrational power in the horizontal direction are compared. It is shown that the estimated results agree well with the measured results. For the supporting structure with multiple coupling points, the other coupling points should be considered for measuring the vibrational power transmitted through one coupling points. We examine the effects of other coupling points and measure the vibrational power without considering the other coupling points.

  • PDF

Noise Attenuation Effect According to the Direction of Canceling Speaker in Duct-acoustic System (덕트-음향 시스템에서 소거용스피커 방향에 따른 소음감소효과)

  • Lee, Hyung-Seok;Lee, Eung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.51-57
    • /
    • 2009
  • In this paper, we studied on an attenuation effect of automobile exhaust noise according to the direction of canceling speaker in duct-acoustic ANC system. Automobile exhaust noise was recorded at 800rpm, 3500rpm and 5000rpm of a diesel engine. Directions of canceling speaker can be set to $30^{\circ}$, $90^{\circ}$ and $150^{\circ}$ against the primary noise flow by acrylic ducts to be made for the experimentation. DSP board used to control the ANC system. The algorithm of this ANC system applied the Filtered-x-LMS algorithm that is modified to compensate for a property of DSP input signal and the secondary-path effect. As an experiment result, the direction of canceling speaker was proved to influence the reduction effect of noise. The $150^{\circ}$ duct in the attenuation effect of noise showed a better result than the $90^{\circ}$ or $30^{\circ}$ duct.

Vibration Analyses of HDD Spindle Systems Supported by Hydrodynamic Bearings Taking into Account Stator's Flexibility (고정자의 유연성을 고려한 유체베어링 지지 HDD 스핀들 계의 진동해석)

  • Lim, Seungchul;Chun, Sang-Bok;Han, Yun-Sik;Lee, Ho-Seong;Kim, Cheol-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.749-756
    • /
    • 2005
  • This paper presents vibration analyses of hard disk drive (HDD) spindle systems based on the finite element method. The systems under investigation have a cantilevered shaft rotating on hydrodynamic bearings. In particular, the influence of stator's flexibility on major modes has been taken into account in dual ways lumped and distributed-parameter model approfches. Even the latter employs relatively macroscopic elements instead of extremely fine ones Popular in commercial codes. In order to prove the effectiveness of such formulated models, two types of HDD prototypes featuring different hub and stator structures are selected as examples. Compared to the first, the second type has a reinforced stator that would raise the natural frequency of the hub's translational (or sideway) mode. Both free and forced vibration characteristics are computed, and subsequently compared with the experimental data. It is our conclusion that Particularly the Proposed distributed model method is an efficient design tool for state-of-the-art HDD spindle systems.

A Study on the Low-frequency Active Echo Reduction Technology for Reducing Underwater Target Echo Signal (수중 표적 신호 방해를 위한 저주파 능동 반향음 감소 기술 연구)

  • Kim, Jaepil;Ji, Youna;Park, Young-cheol;Noh, Eunghwy;Ohm, Won-Suk;Choi, Yonggyu;Kim, Daeup;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • Acoustic tiles are typically installed on the surface of pressure vessels in submarines to minimize echoes based on the ship's own noise and active sonar. In this study, we studied low frequency active echo reduction techniques to reduce underwater target echo signals. Active control algorithms using tile type projectors and FxLMS logic have been developed and the projectors have been installed in the assumed hull structure. The effectiveness of projectors and control algorithms has been evaluated in time and frequency domain analysis through experiments in the tank.

Vibration Control Performance of a Two-way Tuned Liquid Mass Damper Using Real-time Hybrid Shaking Table Testing Method (실시간 하이브리드 진동대 실험법에 의한 양방향 TLMD의 진동제어 성능평가)

  • Heo, Jae-Sung;Lee, Sung-Kyung;Park, Eun-Churn;Lee, Sang-Hyun;Kim, Hong-Jin;Jo, Ji-Seong;Cho, Bong-Ho;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.485-495
    • /
    • 2008
  • An experimental real-time hybrid method, which implements the vibration control of a building structure with only a two-way TLMD, is proposed and verified through a shaking table test. The building structure is divided into the upper experimental TLMD and the lower numerical structural part. The shaking table vibrates the TLMD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and sinusoidal waves input at its base. The results show that the conventional method can be replaced by the proposed methodology with a simple installation and accuracy for evaluating the control performance of a TLMD.

Vibration Analysis of Flexible Rotor Having a Breathing Crack (개폐균열이 존재하는 유연 회전체의 진동해석)

  • Jun, Oh-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1137-1147
    • /
    • 2005
  • The dynamic response due to the unbalance and crack and the quasi-static response due to gravity are analytically derived based on the complex transfer matrix. The additional slope is expressed as function of the bending moment at crack position based on the fracture mechanics concept, and inversely the bending moment is expressed as function of the additional slope at the crack Position. At each angle step during the shaft revolution, the additional slope and bending moment are calculated by an iterativemethod. The transient behavior is considered by introducing Fourier series expansion concept for the additional slope. Simulation is carried out for a simple rotor similar to those available in the literature and comparison of the basic crack behavior is shown. Using the additional slope, the cracked rotor behavior is explained with the crack depth increased: the magnitude of the additional slope increases and the closed crack duration during a revolution decreases as the crack depth increases. The direction of unbalance is also shown as a factor to affect the crack breathing. Whirl orbits are shown near the sub-critical speed ranges of the rotor.