• Title/Summary/Keyword: 소음 방사

Search Result 496, Processing Time 0.03 seconds

The Floor Structure of Korean High Speed Train : Equivalent Plate Model and Acoustic Power Radiation (한국형 고속전철 하니콤 바닥구조의 등가평판모델 및 방사소음평가)

  • 장준호;이상윤;홍성철;이우식;박철희
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.398-404
    • /
    • 1998
  • The acoustic power reduction methods of the vibrating structures are valid to design the quite structure. To calculate the acoustic power, the dynamic responses have to be determined. It is not easy to analyse the structure composed of the corrugated panels. Because of the structural complexity and the many analysing times. To make up for these defects, the equivalent orthogonal panel is presented. Also the acoustic power prediction method of the vibrating structures is proposed. As examples, the equivalent material properties of the corrugated plates are obtained and the acoustic powers of the floor structure are calculated at several frequency regions for KHST.

  • PDF

Multiband Enhancement for DEMON Processing Algorithms (대역 분할 처리를 통한 데몬 처리 성능 향상 기법)

  • Cheong, Myoung Jun;Hwang, Soo Bok;Lee, Seung Woo;Kim, Jin Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.138-146
    • /
    • 2013
  • Passive sonars employ DEMON (Detection of Envelope Modulation on Noise) processing to extract propeller information from the radiated noise of underwater targets. Conventional DEMON processing improves SNR(Signal to Noise Ratio) characteristic by Welch method. The conventional Welch method overlaps several different time domain DEMON outputs to reduce the variance. However, the conventional methods have high computational complexity to get high SNR with correlated acoustic signals. In this paper, we propose new DEMON processing method that divides acoustic signal into several frequency bands before DEMON processing and averages each DEMON outputs. Therefore, the proposed method gathers independent acoustic signal faster than conventional method with low computational complexity. We prove the performance of the proposed method with mathematical analysis and computer simulations.

Acoustic insertion loss by a bubble layer for the application to air bubble curtain and air masker (기포층 음향 삽입손실 연구: 기포커튼과 에어마스커)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.227-236
    • /
    • 2020
  • This paper derives the insertion loss for the bubble layer of an air bubble curtain and an air masker which are used to reduce ocean anthropogenic noise such as the piling noise and the ship noise. The air bubble curtain is considered as a 'fluid-air bubble layer-fluid' model and the environment for the air masker is simplified as an 'vacuum-thin plate-fluid-air bubble layer-fluid' model. The air bubble layer in each model is assumed as the effective medium which has the complex wavenumber and the complex impedance corresponding to the bubble population distribution. The numerical simulations are performed to examine the insertion loss depending on the bubble population, the void fraction, and the thickness of the layer.

A Parameter Study on the Frequency Characteristics of the Structural-acoustic Coupled System (구조-음향 연성계의 경계값 변화에 따른 방사음 변화)

  • 김양한;서희선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.604-611
    • /
    • 2004
  • It is well known that wall impedance essentially determines how sound wave transmits from one place to another. The wall impedance is related with its dynamic properties : for example, the mass, stiffness, and damping characteristics. It is noteworthy, however, that the wall impedance is also function of spatial characteristics of two spaces that is separated by the wall. This is often referred that the wall is not locally reacting. In this paper, we have attempted to see how the acoustic characteristics of the two spaces is affected by various structure parameters such as density, applied tension, and a normalized length of the wall. Calculations are conducted for two different modally reacting boundary conditions by modal expansion method. The variation of the Helmholtz mode and the structural-dominated mode are analyzed as the structure parameters vary. The displacement distribution of the structure, pressure and active intensity of the inside and outside cavity are presented at the Helmholtz mode and the structure-dominated mode. It is shown that the frequency characteristics are governed by both structure-and fluid-dominated mode. The results exhibit that the density of the structure is the most sensitive design parameter on the frequency characteristics for the coupling system as we could imagine in the beginning. The Helmholtz mode frequency decrease as density increases. However. it increases as applied tension and an opening size increase. The bandwidth of the Helmholtz mode is mainly affected by density of the structure and its opening size.

A Study on the Effect and Countermeasures for Radio Wave Interference between LTE-Maritime Radio Facilities and Maritime Radio Service Facilities (초고속 해상무선통신망 무선설비와 해상업무용 무선설비간 전파 간섭 영향 및 대책 연구)

  • Jeong-Hun Lee;Hyung-Jin Moon;Bu-Young Kim;Woo-Seong Shim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.119-120
    • /
    • 2021
  • Radio equipment for maritime service and navigation aids installed on fishing vessels are required to comply with the performance standards KN60945_60533 that apply IEC 60945. The LTE-M transceiver was excluded from the target because it did not belong to the radio equipment of the ship station, and it acted as a cause of audible noise in the radio equipment for maritime service installed in the fishing vessel due to interference by radiated emission or conducted emission. In this paper, we analyze the impact of interference based on related cases and present institutional solutions for the diversification of LTE-M.

  • PDF

Detection of tonal frequency of underwater radiated noise via atomic norm minimization (Atomic norm minimization을 통한 수중 방사 소음 신호의 토널 주파수 탐지)

  • Kim, Junhan;Kim, Jinhong;Shim, Byonghyo;Hong, Jungpyo;Kim, Seongil;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.543-548
    • /
    • 2019
  • The tonal signal caused by the machinery component of a vessel such as an engine, gearbox, and support elements, can be modeled as a sparse signal in the frequency domain. Recently, compressive sensing based techniques that recover an original signal using a small number of measurements in a short period of time, have been applied for the tonal frequency detection. These techniques, however, cannot avoid a basis mismatch error caused by the discretization of the frequency domain. In this paper, we propose a method to detect the tonal frequency with a small number of measurements in the continuous domain by using the atomic norm minimization technique. From the simulation results, we demonstrate that the proposed technique outperforms conventional methods in terms of the exact recovery ratio and mean square error.

Insertion loss by bubble layer surrounding a spherical elastic shell submerged in water (수중의 구형 탄성 몰수체를 둘러싼 기포층에 의한 삽입손실)

  • Lee, Keunhwa;Lee, Cheolwon;Park, Cheolsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.174-183
    • /
    • 2022
  • Acoustic radiation from a submerged elastic shell with an internal fluid surrounded by the bubble layer is studied with the modal theory. An omni-directional point source located on the center of the internal fluid is used as acoustic noise source. The unknown coefficients of modal solutions are solved using the interface conditions between media. To preserve the stability of the modal solution over wide frequency ranges, the scaled technique of modal solution is used. The bubble layer is modeled with four kinds of bubble distribution; uni-modal distribution, uniform distribution, normal distribution, and power-law distribution, based on the effective medium theory of Commander and Prosperetti. For each bubble distribution, the insertion losses are mainly calculated for the frequency. In addition, the numerical simulations are performed depending in the bubble void fraction, the material property of elastic shell, and the gap between the bubble layer and the elastic shell.

Characteristics of Noise Emission from Wind Turbine According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터빈의 방사 소음 특성)

  • Cheong, Cheol-Ung;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.864-871
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and full span pitch control. The main purpose of this paper is to experimentally identify the characteristics of noise emission of wind turbines according to the power regulation types. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbines (WT) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence, third-octave band levels and tonality are evaluated for both of WTs. It is observed that equivalent continuous sound pressure levels (ECSPL) of the stall control type of WT continue to increase with increasing wind speed whereas those of the pitch control type of WT show less correlation with wind speed. These observed characteristics are believed to be due to the different airflow patterns around the blade between the stall regulation and the pitch control types of WT; the airflow on the suction side of blade in the stall types of WT are separated at the high wind speed. It is also found that the 1.5 MW WT using the stall control emits lower sound power than 660 kW one using the pitch control at wind speeds below 8m/s, whereas sound power of the former becomes higher than that of the latter in the wind speed over 8m/s. This wind-speed dependence of sound power leads to the very different noise omission characteristics of WTs depending on the seasons because the average wind speed in summer is lower than 8m/s whereas that in summer is higher. Based on these experimental observations, it is proposed that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

On the Source Identification by Using the Sound Intensity Technique in the Radiated Acoustic Field from Complicated Vibro-acoustic Sources (음향 인텐시티 기법을 이용한 복잡한 진동-음향계의 방사 음장에 대한 음원 탐색에 관하여)

  • 강승천;이정권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.708-718
    • /
    • 2002
  • In this paper, the problems in identifying the noise sources by using the sound intensity technique are dealt with for the general radiated near-field from vibro-acoustic sources. For this purpose, a three-dimensional model structure resembling the engine room of a car or heavy equipment is considered. Similar to the practical situations, the model contains many mutually coherent and incoherent noise sources distributed on the complicated surfaces. The sources are located on the narrow, connected, reflecting planes constructed with rigid boxes, of which a small clearance exists between the whole box structure and the reflecting bottom. The acoustic boundary element method is employed to calculate the acoustic intensity at the near-field surfaces and interior spaces. The effects of relative source phases, frequencies, and locations are investigated, from which the results are illustrated by the contour map, vector plot, and energy streamlines. It is clearly observed that the application of sound intensity technique to the reactive or reverberant field, e.g., scanning over the upper engine room as is usually practiced, can yield the detection of fake sources. For the precise result for such a field, the field reactivity should be checked a priori and the proper effort should be directed to reduce or improve the reactivity of sound field.

A Bibliographical Research of the Correlation Among Sasang Constitutional Disease(사상체질병증) and the Pulse Diagnosis(맥진) (사상체질병증(四象體質病症)과 맥진(脈診)의 상관성(相關性)에 대(對)한 문헌적(文獻的) 고찰(考察))

  • Kim, Dong-Jun;Kim, Jung-Ryul;Kim, Dal-Rae
    • Journal of Pharmacopuncture
    • /
    • v.6 no.3
    • /
    • pp.23-37
    • /
    • 2003
  • The purpose of this research was to investigate the correlation Among Sasang Constitutional Disease and Examination of the pulse. I have gone over literatures of mainly ${\ulcorner}$Dongyi Soose Bowon${\lrcorner}$ and the others Oriental Medical book was studied about the Pulse Diagnosis. And then I came to get some conclusion as follows. 1. Soeumin(소음인) the initial-stage symptoms of wulkwang disease(울광증) ; when the Superficial Pulse and the Superficial+ Moderate Pulse is made a diagnosis, Ceongunggyegitang(천궁계지탕) and Gunggyuhyangsosan(궁귀향소산) can be used. 2. Soeumin(소음인) the initial-stage blood disease symptoms of wulkwang disease(울광증) ; when the Minute+deep Pulse is made a diagnosis, Palmulgnnjatang(팔물군자탕) and Guakhyanggeonggisan(곽향정기산) can be used. 3. Soeumin(소음인) the initial-stage symptoms of mangyang disease(망양증) ; when the Yang region Superficial Pulse and the Yin region Weak Pulse is made a diagnosis, Hwanggigyegitang(황기계지탕), Bojungikgitang(보증익기탕) and Sengyangikgitang(승양익기탕) can be used. 4. Soeumin(소음인) the symptoms of taeum disease(태음증) ; when the Minute Pulse and Deep+Thin Pulse is made a diagnosis, Sasang Prescription can be used. 5. Soeumin(소음인) the symptoms of soeum disease(소음증) ; when the Minute+Thin Pulse, Deep Pulse and Thin+Deep+Rapid Pulse is made a diagnosis, Sasang Prescription can be used. 6. Soyangin(소양인) Wind of soyang disease(소양상풍증) ; when the Superficial+Tight Pulse is made a diagnosis, Hungbangpaedogsan(형방패독산) can be used. And when the Deep+Full with strong power Pulse is made a diagnosis, Hyungbangdojeoksan(형방도적산) can be used. 7. Soyangin(소양인) the symptoms of mangyeum disease(망음증) ; when the Superficial+Large+Rapid Pulse and Flood+Large Pulse is made a diagnosis, Hungbangsabaeksan(형방사백산) can be used. And when the Wiry+Thin Pulse is made a diagnosis, Hungbanggiwhangtang(형방지황탕) can be used. 8. Soyangin(소양인) the chest-phrenic fever syndrome(흉격열증) ; when the Superficial Pulse, Flood+Full+Rapid Pulse and Flood+Large Pulse is made a diagnosis, Sasang Prescription can be used. 9. Soyangin(소양인) the after fever syndrome(음허오열증) ; when the Empty+Soft+Rapid Pulse is made a diagnosis, Sasang Prescription can be used. 10. Taeumin(태음인) the upper neck exterior disease caused by Cold(배추표병) ; when the Superficial and Superficial+Tight Pulse is made a diagnosis, Mawhangbalpoytang(마황발표탕) can be used, And when the Superficial and Superficial+Tight with strong power on left hand Pulse is made a diagnosis, Ungdamsan(웅담산) and Handayulsotang(한다열소탕) can be used. 11. Taeumin(태음인) the Coldness syndrome in esophagus(위완한증) ; when the Superficial+Tight Pulse with weak power on left hand Pulse is made a diagnosis, Taeumjowetang(태음조위탕) can be used. 12. Taeumin(태음인) the Dryness-Heat syndrome(조열증) ; when the Flood+Large Pulse, Long Pulse and Long+Large Pulse is made a diagnosis, Galgeunhaegitang(갈근해기탕) can be used. And when the Tight+Full+Rapid Pulse with deep region is made a diagnosis, Yuldahansotang(열다한소탕) can be used. And when the Superficial+Slippery Pulse is made a diagnosis, Chungsimyunjatang(청심연자탕) can be used. 13. Taeumin(태음인) the symptoms of Yin-blood Exhaustion(음혈모갈증) ; when the Superficial with weak power Pulse is made a diagnosis, Nokyongdaebotang(녹용대보탕) can be used. And when the Deep with weak power Pulse is made a diagnosis, Gongjinheukwondan(공진흑원단) can be used. 14. Taeyangin(태양인) a slight Lumbar vertebrae disease(외감경증) ; when the Superficial+Hollow Pulse is made a diagnosis, Gunshitang(건시탕) can be used. 15. Taeyangin(태양인) the Generalized and Fatigue syndrome(해역증) ; when the Moderate+Choppy Pulse with left hand chi region(척맥) is made a diagnosis, Ogapijangchuktang(오가피장척탕) can be used. 16. Taeyangin(태양인) a slight Small Intestine disease(내촉경증)