• Title/Summary/Keyword: 소음 반사

검색결과 144건 처리시간 0.017초

파일 항타진동이 인접 비탈면에 미치는 영향 (Influence of Pile Driving-Induced Vibration on the Adjacent Slope)

  • 곽창원
    • 한국지반공학회논문집
    • /
    • 제39권5호
    • /
    • pp.27-40
    • /
    • 2023
  • 말뚝은 상부 구조물의 하중을 지지층으로 전달하는 구조체로 국내외 건설 현장에서 널리 사용되고 있다. 말뚝을 시공하는 방법은 지반조건, 시공위치, 주변현황, 환경적 요소, 공사비 등을 종합적으로 고려하여 결정하며 크게 직항타에 의한 타입방식과 선굴착 후 경타 또는 항타하는 방식으로 나눌 수 있다. 이 중 직항타는 말뚝 두부를 해머로 항타하여 원지반 내 소정의 심도까지 근입시키므로 항타 시 가해지는 에너지가 크고 이에 따른 항타진동 및 소음도 증가한다. 말뚝의 항타진동은 주변 시설물 및 지반에 영향을 미치므로 그 영향을 정량적으로 파악할 필요가 있다. 본 연구에서는 말뚝의 항타진동을 시간영역에서 산정하고, 직항타 시 말뚝과 인접하여 위치한 굴착면 및 가시설에 대하여 항타진동에 의한 영향을 유한차분해석법에 의한 2차원 동적수치해석을 통하여 분석하였다. 그 결과 파의 반사 및 재료감쇠가 적은 지표면에서 표면파에 의하여 지중보다 변위가 현저히 크게 발생하는 경향을 나타내었고 전체 변위 크기는 이격거리 증가에 따라 감소하나 수평방향 변위는 진동원과 먼 사면 상단부에서 연직방향 대비 더 큰 값을 보이며 법면부에 변위가 집중적으로 발생하는 특징을 확인하였다.

3개 센서의 광대역 신호 스펙트로그램에 나타나는 간섭패턴을 이용한 수중 표적의 위치 추정 (Underwater Target Localization Using the Interference Pattern of Broadband Spectrogram Estimated by Three Sensors)

  • 김세영;천승용;김기만
    • 한국음향학회지
    • /
    • 제26권4호
    • /
    • pp.173-181
    • /
    • 2007
  • 본 논문에서는 음향 스펙트로그램을 이용하여 수중 이동표적의 위치를 추정하기 위한 방법을 연구하였다. 주파수와 시간의 2차원 평면으로 표현되는 스펙트로그램은 수중 운동체의 이동 정보를 제공한다. 음원과 수신 센서간의 거리가 충분히 멀 경우 스펙트로그램의 넓은 주파수에 걸쳐 발생하는 줄무늬들은 해수면 및 해저면에 의해 반사된 모드간의 간섭을 의미하고, 이때 최대 음압이 발생하는 줄무늬의 기울기는 음향 도파관 불변인자 ${\beta}$와 표적과 센서간의 거리에 의해 영향을 받는다. 2개 이상의 센서를 사용하여 이동하는 선박의 광대역 방사 소음을 측정한 경우 스펙트로그램에 나타나는 최대 음압이 발생하는 줄무늬의 기울기와 줄무늬가 주파수축에서 천이된 비율이 표적과 센서간의 거리에 따라 각각 다르게 나타난다. 두개의 센서를 두 정점으로 가정하여 표적에 이르는 거리의 비가 일정한 값을 가지면서 운동하는 점의 자취인 아폴로니오스의 원을 형성하고, 3개의 센서를 사용할 경우 두 개의 원이 서로 교점을 형성하는데, 이 교점의 좌표를 표적의 위치라 추정한다. 제안된 위치 추정 기법의 성능을 평가하기 위해 음파전달 프로그램을 이용한 시뮬레이션을 수행하였다.

소수 불균형 데이터의 심층학습을 통한 능동소나 다층처리기의 표적 인식성 개선 (Improving target recognition of active sonar multi-layer processor through deep learning of a small amounts of imbalanced data)

  • 류영우;김정구
    • 한국음향학회지
    • /
    • 제43권2호
    • /
    • pp.225-233
    • /
    • 2024
  • 능동소나는 은밀하게 기동하는 수중 물체를 탐지하기 위해 음파를 송신하여 표적에서 반사되어 돌아오는 신호를 탐지한다. 그러나 능동소나의 수신 신호에는 표적의 반향음 외에도 해저면/해수면의 잔향, 생물 소음 및 기타 잡음 등이 섞여 있어 표적 인식을 어렵게 한다. 기존의 문턱값 이상의 신호를 탐지하는 기법은 설정한 문턱값에 따라 오탐지가 발생하거나 표적을 놓치는 경우가 발생할 뿐 아니라 다양한 수중환경마다 적절한 문턱값을 설정해야하는 문제가 있다. 이를 극복하기 위해 Constant False Alarm Rate(CFAR) 등의 기법을 이용한 문턱값의 자동산출과 진보된 형태의 추적 필터 및 연계 기법을 적용한 연구가 수행되었지만, 상당수의 탐지가 발생하는 환경에서는 그 한계가 있다. 최근 심층학습 기술이 발달함에 따라 수중 표적 탐지분야에도 이를 적용하기 위한 노력이 있었으나, 분류기 학습을 위한 능동소나 데이터의 획득이 매우 어려워 데이터가 희소할 뿐 아니라, 극소수의 표적과 상대적 다수의 비표적으로 인한 데이터의 불균형성으로 어려움이 있다. 본 논문에서는 탐지 신호의 에너지 분포 영상을 이용하되, 데이터의 불균형성을 고려한 방식으로 분류기를 학습하여 표적과 비표적을 구분하는 기법을 기존 소나처리 기법에 추가하여 표적의 오분류를 최소화하면서 비표적을 제거하여 능동소나 운용자의 표적 인식을 용이하게 하였다. 그리고 동해에서 수행한 해상실험에서 획득한 능동소나 데이터를 통해 제안 기법의 유효성을 검증하였다.

실데이터 기반 능동 소나 신호 합성 방법론 (Real data-based active sonar signal synthesis method)

  • 김윤수;김주호;석종원;홍정표
    • 한국음향학회지
    • /
    • 제43권1호
    • /
    • pp.9-18
    • /
    • 2024
  • 최근 수중표적의 저소음화와 해상교통량의 증가로 인한 주변 소음의 증가로 능동 소나 시스템의 중요성이 증대되고 있다. 하지만 신호의 다중 경로를 통한 전파, 다양한 클러터와 주변 소음 및 잔향 등으로 인한 반향신호의 낮은 신호대잡음비는 능동 소나를 통한 수중 표적 식별을 어렵게 만든다. 최근 수중 표적 식별 시스템의 성능을 향상 시키기 위해 머신러닝 혹은 딥러닝과 같은 데이터 기반의 방법을 적용시키려는 시도가 있지만, 소나 데이터셋의 특성 상 훈련에 충분한 데이터를 모으는 것이 어렵다. 부족한 능동 소나 데이터를 보완하기 위해 수학적 모델링에 기반한 방법이 주로 활용되어오고 있다. 그러나 수학적 모델링에 기반한 방법론은 복잡한 수중 현상을 정확하게 모의하는 데에는 한계가 있다. 따라서 본 논문에서는 심층 신경망 기반의 소나 신호 합성 기법을 제안한다. 제안하는 방법은 인공지능 모델을 소나 신호 합성 분야에 적용하기 위해, 음성 합성 분야에서 주로 사용되는 타코트론 모델의 주요 모듈인 주의도 기반의 인코더 및 디코더를 소나 신호에 적절하게 수정하였다. 실제 해상 환경에 모의 표적기를 배치해 수집한 데이터셋을 사용하여 제안하는 모델을 훈련시킴으로써 보다 실제 신호와 유사한 신호를 합성해낼 수 있게 된다. 제안된 방법의 성능을 검증하기 위해, 합성된 음파 신호의 스펙트럼을 직접 분석을 진행하여 비교하였으며, 이를 바탕으로 오디오 품질 인지적 평가(Perceptual Quality of Audio Quality, PEAQ)인지적 성능 검사를 실시하여 총 4개의 서로 다른 환경에서 생성된 반사 신호들에 대해 원본과 비교해 그 차이가 최소 -2.3이내의 높은 성적을 보여주었다. 이는 본 논문에서 제안한 방법으로 생성한 능동 소나 신호가 보다 실제 신호에 근사한다는 것을 입증한다.