• Title/Summary/Keyword: 소음경로분석

Search Result 74, Processing Time 0.018 seconds

A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms (해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계)

  • Lee, Bo-Kyeong;Cho, Ik-Soon;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.848-857
    • /
    • 2018
  • Recently, around the world, active development of new renewable energy sources including solar power, waves, and fuel cells, etc. has taken place. Particularly, floating offshore wind farms have been developed for saving costs through large scale production, using high-quality wind power and minimizing noise damage in the ocean area. The development of floating wind farms requires an evaluation of the Maritime Safety Audit Scheme under the Maritime Safety Act in Korea. Floating wind farms shall be assessed by applying the line and area concept for systematic development, management and utilization of specified sea water. The development of appropriate evaluation methods and standards is also required. In this study, proper standards for marine traffic surveys and assessments were established and a systemic treatment was studied for assessing marine spatial area. First, a marine traffic data collector using AIS or radar was designed to conduct marine traffic surveys. In addition, assessment methods were proposed such as historical tracks, traffic density and marine traffic pattern analysis applying the line and area concept. Marine traffic density can be evaluated by spatial and temporal means, with an adjusted grid-cell scale. Marine traffic pattern analysis was proposed for assessing ship movement patterns for transit or work in sea areas. Finally, conceptual design of a Marine Traffic and Safety Assessment Solution (MaTSAS) was competed that can be analyzed automatically to collect and assess the marine traffic data. It could be possible to minimize inaccurate estimation due to human errors such as data omission or misprints through automated and systematic collection, analysis and retrieval of marine traffic data. This study could provides reliable assessment results, reflecting the line and area concept, according to sea area usage.

A Study on Auxiliary Pole Installation of Concentrated Winding PMLSM with Bifurcating of Armature Teeth (Bifurcating을 적용한 집중권 PMLSM의 보조극 설치에 관한 연구)

  • Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1067-1072
    • /
    • 2012
  • Recently, linear motors have been widely researched and have been increasingly used in various industrial applications. Especially, permanent magnet linear synchronous motors(PMLSMs) have been getting the spotlight in the transportation system. A PMLSM is structurally simple and has a lot of merits such as high speed, high thrust force, etc. However, in case of a long stator system which arranges armature to the full length of transportation lines, a PMLSM has some disadvantages such as the material cost increase and long manufacturing time. Hence, in order to overcome these problems, the PMLSM with stationary discontinuous armature structure and concentrated windings was proposed. However, this method occurs undesirable cogging force by outlet edge effect. The cogging force causes thrust force ripples and generates noise and vibration. Therefore, in this paper, we proposed installation method of auxiliary pole PMLSM with concentrated winding applying bifurcating in order to reduce cogging force by the outlet edge when the armature is placed in a discontinuous arrangement. Also, we have examined characteristics of outlet edge cogging force using 2-D finite element analysis(FEA).

Vibration Reduction Effect and Structural Behavior Analysis for Column Member Reinforced with Vibration Non-transmissible Material (진동절연재로 보강된 기둥부재의 진동저감효과 및 구조적 거동분석)

  • Kim, Jin-Ho;Yi, Na-Hyun;Hur, Jin-Ho;Kim, Hee-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • For elevated railway station on which track is connected with superstructure of station, structural vibration level and structure-borne-noise level has exceeded the reference level due to structural characteristics which transmits vibration directly. Therefore, existing elevated railway station is in need of economical and effective vibration reduction method which enable train service without interruption. In this study, structural vibration non-transmissible system which is applied to vibroisolating material for column member is developed to reduce vibration. That system is cut covering material of the column section using water-jet method and is installed with vibroisolating material on cut section. To verify vibration reduction effect and structural performance for structural vibration non-transmissible system, impact hammer test and cyclic lateral load test are performed for 1/4 scale test specimens. It is observed that natural period which means vibration response characteristics is shifted, and damping ratio is increased about 15~30% which means that system is effective to reduce structural vibration through vibration test. Also load-displacement relation and stiffness change rate of the columns are examined, and it is shown that ductility and energy dissipation capacity is increased. From test results, it is found that vibration non-transmissible system which is applied to column member enable to maintains structural function.

Real data-based active sonar signal synthesis method (실데이터 기반 능동 소나 신호 합성 방법론)

  • Yunsu Kim;Juho Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • The importance of active sonar systems is emerging due to the quietness of underwater targets and the increase in ambient noise due to the increase in maritime traffic. However, the low signal-to-noise ratio of the echo signal due to multipath propagation of the signal, various clutter, ambient noise and reverberation makes it difficult to identify underwater targets using active sonar. Attempts have been made to apply data-based methods such as machine learning or deep learning to improve the performance of underwater target recognition systems, but it is difficult to collect enough data for training due to the nature of sonar datasets. Methods based on mathematical modeling have been mainly used to compensate for insufficient active sonar data. However, methodologies based on mathematical modeling have limitations in accurately simulating complex underwater phenomena. Therefore, in this paper, we propose a sonar signal synthesis method based on a deep neural network. In order to apply the neural network model to the field of sonar signal synthesis, the proposed method appropriately corrects the attention-based encoder and decoder to the sonar signal, which is the main module of the Tacotron model mainly used in the field of speech synthesis. It is possible to synthesize a signal more similar to the actual signal by training the proposed model using the dataset collected by arranging a simulated target in an actual marine environment. In order to verify the performance of the proposed method, Perceptual evaluation of audio quality test was conducted and within score difference -2.3 was shown compared to actual signal in a total of four different environments. These results prove that the active sonar signal generated by the proposed method approximates the actual signal.