• Title/Summary/Keyword: 소요 면적

Search Result 700, Processing Time 0.028 seconds

A 14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS Algorithmic A/D Converter (14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS 알고리즈믹 A/D 변환기)

  • Park, Yong-Hyun;Lee, Kyung-Hoon;Choi, Hee-Cheol;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.65-73
    • /
    • 2006
  • This work presents a 14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS algorithmic A/D converter (ADC) for intelligent sensors control systems, battery-powered system applications simultaneously requiring high resolution, low power, and small area. The proposed algorithmic ADC not using a conventional sample-and-hold amplifier employs efficient switched-bias power-reduction techniques in analog circuits, a clock selective sampling-capacitor switching in the multiplying D/A converter, and ultra low-power on-chip current and voltage references to optimize sampling rate, resolution, power consumption, and chip area. The prototype ADC implemented in a 0.18um 1P6M CMOS process shows a measured DNL and INL of maximum 0.98LSB and 15.72LSB, respectively. The ADC demonstrates a maximum SNDR and SFDR of 54dB and 69dB, respectively, and a power consumption of 1.2mW at 200KS/s and 1.8V. The occupied active die area is $0.87mm^2$.

Development of Drought Map Based on Three-dimensional Spatio-temporal Analysis of Drought (가뭄사상에 대한 3차원적 시공간 분석을 통한 가뭄지도 개발)

  • Yoo, Jiyoung;So, Byung-Jin;Kwon, Hyun-Han;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • A drought event is characterized by duration, severity and affected area. In general, after calculating a drought index using hydro-meteorological time series at a station, a drought event is defined based on the run theory to identify the beginning and end time. However, this one-dimensional analysis has limitations for analyzing the spatio-temporal occurrence characteristics and movement paths of drought. Therefore, this study is to define a three-dimensional drought event using a simple clustering algorithm and to develop a drought map that can be used to understand the drought severity according to the spatio-temporal expansion of drought. As a result, compared with the two-dimensional monitoring information to show spatial distribution of drought index, a proposed drought map is able to show three-dimensional drought characteristics inclusing drought duration, spatial cumulative severity, and centroid of drought. The analysis of drought map indicated that there was a drought event which had the affected area less than 10 % while on occations while there were 11 drought events (44 %) which had the affected area more a than 90 % of the total area. This means that it is important to understand the relationship between spatial variation of drought affected area and severity corresponding to various drought durations. The development of drought map based on three-dimensional drought analysis is useful to analyze the spatio-temporal occurrence characteristics and propagation patterns of regional drought which can be utilized in developing mitigation measures for future extreme droughts.

Properties and Utilization of Undigested Peptides in Anchovy Sauces 2. Effect of Fermentation Periods on Undigested Peptides of Anchovy Sauces (멸치 액젓 중에 존재하는 미분해 펩티드의 특성과 이용 2. 미분해 펩티드에 미치는 숙성기간의 영향)

  • CHO Young-Je;KIM Se-Hwan;IM Yeong-Sun;KIM In-Soo;KIM Dong-Su;CHOI Yeung Joon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.393-398
    • /
    • 1998
  • The effect of fermentation period on the accumulation of 55,600 dalton polypeptide was analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) as a quality parameter of anchovy sauces. Also, proximate compositions, total nitrogen contents, amount of specfic pepited and isoelectric point(pI0 were investigated during fermentation periods. Total nitrogen contents significantly increased until 18 months. Polypeptide of 55,600 and 46,900 dalton on SDS-PAGE and pI 5.2, 5.6 and 6.0 on isoelectric focusing were identified in all the samples. Especially, the amount of 55,600 dalton had no important change during fermentation periods, and it had a high correlation with dilution degree of anchovy sauces diluted with water. The results could be suggest that the amonts of 55,600 dalton polypeptide will be index for quality estimation of commerical anchovy sauces.

  • PDF

Parallel Inverse Transform and Small-sized Inverse Quantization Architectures Design of H.264/AVC Decoder (H.264/AVC 복호기의 병렬 역변환 구조 및 저면적 역양자화 구조 설계)

  • Jung, Hong-Kyun;Cha, Ki-Jong;Park, Seung-Yong;Kim, Jin-Young;Ryoo, Kwang-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.444-447
    • /
    • 2011
  • In this paper, parallel IT(inverse transform) architecture and IQ(inverse quantization) architecture with common operation unit for the H.264/AVC decoder are proposed. By using common operation unit, the area cost and computational complexity of IQ are reduced. In order to take four execution cycles to perform IT, the proposed IT architecture has parallel architecture with one horizontal DCT unit and four vertical DCT units. Furthermore, the execution cycles of the proposed architecture is reduced to five cycles by applying two state pipeline architecture. The proposed architecture is implemented to a single chip by using Magnachip 0.18um CMOS technology. The gate count of the proposed architecture is 14.3k at clock frequency of 13MHz and the area of proposed IQ is reduced 39.6% compared with the previous one. The experimental result shows that execution cycle the proposed architecture is about 49.09% higher than that of the previous one.

  • PDF

Cost Analysis of Wrap Silage Production in the Paddy Field for Forage Crop Cropping System (답리작 사료작물의 랩사일리지 생산비 분석)

  • Ha, Yu-Shin;Park, Kyung-Kyoo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.1
    • /
    • pp.75-84
    • /
    • 2012
  • Mechanized operation model and mechanical cultivation technology for winter barley, rye, Italian ryegrass and sudan grass wrap silage production system at the paddy field for cropping system was developed. Also, a series of experiment were performed and lots of data were collected and analyzed to develope mechanical technology, coverage area, and optimum size of the farm (break-even point) for wrap silage production system. The coverage area for winter barley or rye wrap-silage production system is determined around 61.9, 73.4, 77.5, 88.2 ha in the case of drill seeding and different ripening species by tractor power 50, 75, 100, 130 ps, respectably. The break-even point of the farming size is analyzed as 20 ha and its production cost is estimated around 367, 383, 430, 443 won/TDN-kg in the case of winter barley wrap-silage by tractor power 50, 75, 100, 130 ps, respectably. The break-even point of the farming size is analyzed as coverage area and its production cost is estimated around 237, 215 won/TDN-kg in the case of winter barley wrap silage and sudan grass by the tractor power 50, 100 ps, respectably.

A Structural Relationship of Topography, Developed Areas, and Riparian Vegetation on the Concentration of Total Nitrogen in Streams (지형, 개발지역, 수변림과 하천 내 총질소 농도와의 구조적 관계 분석)

  • Lee, Sang-Woo;Lee, Jong-Won;Park, Se-Rin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Land use in watersheds has been shown to be a major driving factor in determining the status of the water quality of streams. In this light, scientists have been investigating the roles of riparian vegetation on the relationships between land use in watersheds and the associated stream water quality. Numerous studies reported that riparian vegetation could alleviate the adverse effects caused by land use in watersheds and on stream water quality through various hydrological, biochemical and ecological mechanisms. However, this concept has been criticized as the true effects of riparian vegetation must be assessed by comprehensive models that mimic real environmental settings. This study aimed to estimate a comprehensive structural equation model integrating topography, land use, and characteristics of riparian vegetation. We used water quality data from the Nakdong River system monitored under the National Aquatic Ecosystem Monitoring Program (NAEMP) of the Korean Ministry of Environment (MOE). Also, riparian vegetation data and land use data were extracted from the Land Use/Land Cover map (LULC) produced by the MOE. The number of structural equation models (SEMs) were estimated in Amos of IBM SPSS. Study results revealed that land use was determined by elevation, and developed areas within a watershed significantly increased the concentration of Total Nitrogen (TN) in streams and LDI in riparian vegetation. On the contrary, developed areas significantly reduced LPI and PLAND. At the same time, PLAND and LDI significantly reduced the concentration of TN in streams. Thus, it was clear that developed areas in watersheds had both a direct and an indirect impact on the concentration of TN in streams, and spatial pattern and the amount of vegetation of riparian vegetation could significantly alleviate the negative impacts of developed areas on TN concentration in streams. To enhance stream water quality, reducing developed areas in a watershed is critical for long-term watershed management plans, restoration patterns for riparian vegetation could be immediately implemented since riparian areas were less developed than most other watersheds.

Study on the Characteristics and Non-point Source Pollution Loads in Stormwater Runoff of Shihwa Lake (시화호 유역 비점오염물질의 유출특성 및 부하량 연구)

  • Ra, Kong-Tae;Kim, Kyung-Tae;Kim, Joung-Keun;Bang, Jae-Hyun;Lee, Jung-Moo;Kim, Sung-Keun;Kim, Eun-Soo;Yun, Min-Sang;Cho, Sung-Rok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.40-50
    • /
    • 2011
  • We study the characteristic and total flux of non-point pollutants such as total suspended solids (TSS), chemical oxygen demand (COD), dissolved nutrients, total phosphorus (TP) and total nitrogen (TN) in the storm water runoff from urban streams and sewer outlets of Banweol Industrial Complex around Shihwa Lake. The concentrations of non-point pollutants were generally increased with increasing of the duration and intensity of rainfall. Mean TSS concentration of Ansan stream was higher than that of sewer outlets but mean concentrations of COD, TP and TN were approximately 2~5 times higher of sewer outlet than of urban stream. TSS showed statistically positive relationships with COD and TP but it had negative correlation with dissolved nutrients. There was a significant correlation between total flux of non-point pollutants in the storm water runoff and total basin area of each sewer outlet, showing that the highest runoff flux was observed at 3rd sewer outlet which represents the largest basin area from Banweol industrial complex. Total runoff fluxes for TSS, COD, TP and TN in this study were 187,536 kg, 17,118 kg, 922 kg, 13,519 kg, respectively. Given the basin area of sewer outlet in Banweol industrial complex which corresponds only 3% from total catchment area around Shihwa Lake, enormous amount of non-point pollutants will be entered into Shihwa Lake without any treatment. It is necessary to manage and reduce of various non-point sources and pollutants because the runoff of nonpoint pollutants during storm events should be deteriorating the water quality of Shihwa Lake. Our results provides useful informations on the development of best managements practices (BMPs) for effective implementation of total pollution loads management system of Shihwa Lake.

초소형 실리콘 신경탐침의 임피던스 특성 향상 연구

  • Lee, Su-Jin;Lee, Lee-Jae;Yun, Hyo-Sang;Park, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.427-428
    • /
    • 2014
  • 서론: 최근 전세계적인 고령화 진행에 따른 뇌졸중, 파킨슨병, 알츠하이머병 등과 같은 각종 뇌관련 질환에 대한 관심이 더욱 높아지고 있으며 다양한 뇌질환 치료를 위하여 뇌 신경 신호의 정확한 검출 대한 연구가 학계에서 활발히 진행되고 있다. 효과적인 뇌 신경 신호 검출을 위해서는 세포조직의 손상을 최소화 할 수 있는 초소형 신경탐침 및 극소 면적내에서 극대화된 검출 전극이 구현되어야 한다. 그러나, 극소 면적내에 구성된 소면적 전극을 통한 신호 검출은 전극 계면에서의 높은 임피던스를 야기시켜 정밀한 신경신호 검출에 어려움을 만든다. 따라서, 뇌 신경 신호 검출시 전극 계면에서의 낮은 임피던스를 검출하기 위한 다결정실리콘, 이리듐 산화막, 탄소나노튜브와 같은 다양한 전극 소재를 이용한 신경탐침 연구가 제안되어 왔다. 본 연구에서는 극소화된 전극면적과 신경세포 계면에서의 저 임피던스 신경신호 검출을 위하여 비이온성 계면활성제와 전해도금을 이용하여 높은 거칠기값을 갖는 나노동공 백금층을 검출 전극으로 활용하였다. 실험 결과: 제작된 신경탐침의 몸체는 실리콘으로 이루어지며, 탐침 끝단에는 신호 측정을 위한 나노동공 백금층을 갖는 전극들이 집적되어 있다. Fig. 1 는 제작된 나노동공 백금을 갖는 신경탐침의 이미지 (a), SEM (b), TEM (c), FESEM (d) 측정결과를 보여준다. 0.9 %의 NaCl 용액에서 제작된 신경탐침의 계면임피던스 및 위상각 변화에 대한 측정결과가 Fig. 2에 나타나 있다. 1.2 kHz 주파수에서 $942.6K{\Omega}$ ($0.029{\Omega}cm^2$, $3.14{\mu}m^2$)로 극대화된 실표면적을 갖는 나노동공 백금층에 의하여 매우 낮은 임피던스 특성을 보인 것으로 판단된다. 또한 제작된 신경탐침은 위상각이 $-82.9^{\circ}$로서 캐패시터와 같은 역할을 하고 있다고 예상할 수 있었으며 $4.6mFcm^{-2}$의 축전용량값을 보였다. Fig. 3는 1 M의 황산용액에서 나노동공백금층이 형성된 신경탐침 전극과 형성 전의 전기화학적 표면변화를 비교분석한 결과로서 나노동공 백금층의 형성 전/후의 전류응답 특성이 상이하게 나타났다. 나노동공 백금층의 실표면적 극대화로 인한 전류응답수치 또한 크게 향상 되었으며, 0~-0.25 V 영역에서의 수소 흡착에 따른 환원곡선은 전형적인 백금 특성을 보여주는 결과로 판단 할 수 있다. Table 1는 기존에 연구되었던 신경탐침들과 본 연구에서 제작된 나노동공 백금을 갖는 신경탐침의 임피던스와 캐패시턴스 특성을 비교한 결과이다. 결론: 본 연구에서는 실리콘 신경탐침 끝단에 집적된 전극상에 전해도금법을 이용하여 높은 거칠기값을 갖는 나노동공 백금층을 형성하고 전극 계면상의 낮은 임피던스를 검출을 하였다. 나노동공 백금층을 갖는 신경탐침은 순환전압전류법을 통해 극대화된 실표면적을 극대화를 확인할 수 있었으며, 극대화된 검출 전극면은 저 임피던스 측정에 용이함을 실험을 통해서 증명할 수 있었다. 따라서, 높은 거칠기값의 나노동공 백금층은 초소형화된 신경탐침상에 집적되는 전극면적소형화와 다수의 전극 구현에 효과적일 것으로 판단되며 보다 정확한 신경신호 검출을 통한 뇌질환의 명확한 이해에 유망할 것으로 판단된다.

  • PDF

A Study on the Vegetation Ecological Characteristics and Management of Ansan Reclaimed Wetlands (안산 간척 습지의 식생 생태적 특성 및 관리에 관한 연구)

  • Kim, Kee-Dae
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.4
    • /
    • pp.318-335
    • /
    • 2007
  • Floral study and present vegetation survey were conducted at a representative reclaimed wetland located behind the Rural Research Institute at Ansan, Gyeonggi-do. The importance values were calculated from the ground cover and frequency of recorded species within quadrats and detrended canonical correspondence analysis was conducted using environment variables, such as total nitrogen, electric conductivity, available phosphate, nitrate nitrogen and the distance from the inner roads. And basal areas for the trees encroaching on the reclaimed wetland were estimated to take a look at the on-going situation about the succession routes on land. As a result, 46 families and 158 species of plants were recorded and Pragmites communis was found to be a dominant species as the present vegetation. The ordination analysis results showed that species distribution was purposely explained by total nitrogen in soil and its content in nitrate nitrogen. The invasion of Robinia pseudoacacia and Pinus rigida whose basal areas were $22.3m^2$ and $1.6m^2$ respectively, into the interior areas of the reclaimed wetland was found to cause a disturbance making some parts of the wetland into land. The zoning program using water level control and migratory roads is becoming a contributing factor in destroying a wetland, so it's suggested that some adjustments should be needed to take care of it.

A small-area implementation of cryptographic processor for 233-bit elliptic curves over binary field (233-비트 이진체 타원곡선을 지원하는 암호 프로세서의 저면적 구현)

  • Park, Byung-Gwan;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1267-1275
    • /
    • 2017
  • This paper describes a design of cryptographic processor supporting 233-bit elliptic curves over binary field defined by NIST. Scalar point multiplication that is core arithmetic in elliptic curve cryptography(ECC) was implemented by adopting modified Montgomery ladder algorithm, making it robust against simple power analysis attack. Point addition and point doubling operations on elliptic curve were implemented by finite field multiplication, squaring, and division operations over $GF(2^{233})$, which is based on affine coordinates. Finite field multiplier and divider were implemented by applying shift-and-add algorithm and extended Euclidean algorithm, respectively, resulting in reduced gate counts. The ECC processor was verified by FPGA implementation using Virtex5 device. The ECC processor synthesized using a 0.18 um CMOS cell library occupies 49,271 gate equivalents (GEs), and the estimated maximum clock frequency is 345 MHz. One scalar point multiplication takes 490,699 clock cycles, and the computation time is 1.4 msec at the maximum clock frequency.