• Title/Summary/Keyword: 소요연성도

Search Result 33, Processing Time 0.017 seconds

Numerical Simulation of Full-Scale Crash Impact Test for Fuel Cell of Rotorcraft (회전익항공기 연료셀 충돌충격시험 Full-Scale 수치모사)

  • Kim, Hyun-Gi;Kim, Sung Chan;Kim, Sung Jun;Kim, Soo Yeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.343-349
    • /
    • 2013
  • Crashworthy fuel cells have a great influence on improving the survivability of crews. Since 1960's, the US army has developed a detailed military specification, MIL-DTL-27422, defining the performance requirements for rotorcraft fuel cells. In the qualification tests required by MIL-DTL-27422, the crash impact test should be conducted to verify the crashworthiness of fuel cell. Success of the crash impact test means the improvement of survivability of crews by preventing post-crash fire. But, there is a big risk of failure due to huge external load in the crash impact test. Because the crash impact test itself takes a long-term preparation efforts together with costly fuel cell specimens, the failure of crash impact test can result in serious delay of a entire rotorcraft development. Thus, the numerical simulations of the crash impact test has been required at the early design stage to minimize the possibility of trial-and-error with full-scale fuel cells. Present study performs the numerical simulation using SPH(smoothed particle hydro-dynamic) method supported by a crash simulation software, LS-DYNA. Test condition of MIL-DTL-27422 is reflected on analysis and material data is acquired by specimen test of fuel cell material. As a result, the resulting equivalent stresses of fuel cell itself are calculated and vulnerable areas are also evaluated.

Antiviral and Therapeutic Effects of Extracts (PB-81) of Daphne Genkwa (Siebold & Zucc.) on Bovine Rotavirus (원화추출물(PB-81)의 소 로타바이러스 설사병에 대한 항바이러스 및 치료효과)

  • Mi Young Lee;Yeon Seong Kim;Jae Myung Park;Jae Chan Song
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.408-417
    • /
    • 2024
  • It was confirmed whether PB-81, a 50% ethanol extract of Daphne genkwa (Siebold & Zucc), had an inhibitory effect on virus proliferation in bovine rotavirus and a therapeutic effect on bovine diarrhea disease. The results showed that PB-81 induced the interferon beta in A549 cells, an epithelial cell line and interferon gamma in NK92 cells, a blood cell line. Furthermore, to confirm the viral proliferation inhibitory effect of PB-81, PB-81 was administered to MBDK cell line before, during, and after infection. Result shows that the virus was suppressed in all cases where PB-81 was administered, and the best virus suppression effect was achieved when PB-81 was administered before virus infection. In the toxicity test in mice, no side effects due to toxicity were observed, even at a maximum dose of 20 mg/mL. To verify the therapeutic effect on 16 cattle with bovine rotavirus diarrhea and 4 cattle in the control group, PB-81 was administered at a dose of 20 mg/5 mL, and No fatality was observed during the treatment. The average recovery duration from the initial administration of PB-81 was 2.25 days in the PB-81 administration group and 6.5 days in the control group without PB-81 administration. No side effects were observed from the tested cattle with rotavirus diarrhea.

A Study on the Distinct Element Modelling of Jointed Rock Masses Considering Geometrical and Mechanical Properties of Joints (절리의 기하학적 특성과 역학적 특성을 고려한 절리암반의 개별요소모델링에 관한 연구)

  • Jang, Seok-Bu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.35-81
    • /
    • 1998
  • Distinct Element Method(DEM) has a great advantage to model the discontinuous behaviour of jointed rock masses such as rotation, sliding, and separation of rock blocks. Geometrical data of joints by a field monitoring is not enough to model the jointed rock mass though the results of DE analysis for the jointed rock mass is most sensitive to the distributional properties of joints. Also, it is important to use a properly joint law in evaluating the stability of a jointed rock mass because the joint is considered as the contact between blocks in DEM. In this study, a stochastic modelling technique is developed and the dilatant rock joint is numerically modelled in order to consider th geometrical and mechanical properties of joints in DE analysis. The stochastic modelling technique provides a assemblage of rock blocks by reproducing the joint distribution from insufficient joint data. Numerical Modelling of joint dilatancy in a edge-edge contact of DEM enable to consider not only mechanical properties but also various boundary conditions of joint. Preprocess Procedure for a stochastic DE model is composed of a statistical process of raw data of joints, a joint generation, and a block boundary generation. This stochastic DE model is used to analyze the effect of deviations of geometrical joint parameters on .the behaviour of jointed rock masses. This modelling method may be one tool for the consistency of DE analysis because it keeps the objectivity of the numerical model. In the joint constitutive law with a dilatancy, the normal and shear behaviour of a joint are fully coupled due to dilatation. It is easy to quantify the input Parameters used in the joint law from laboratory tests. The boundary effect on the behaviour of a joint is verified from shear tests under CNL and CNS using the numerical model of a single joint. The numerical model developed is applied to jointed rock masses to evaluate the effect of joint dilation on tunnel stability.

  • PDF