• Title/Summary/Keyword: 소스

Search Result 4,285, Processing Time 0.026 seconds

Change Acceptable In-Depth Searching in LOD Cloud for Efficient Knowledge Expansion (효과적인 지식확장을 위한 LOD 클라우드에서의 변화수용적 심층검색)

  • Kim, Kwangmin;Sohn, Yonglak
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.171-193
    • /
    • 2018
  • LOD(Linked Open Data) cloud is a practical implementation of semantic web. We suggested a new method that provides identity links conveniently in LOD cloud. It also allows changes in LOD to be reflected to searching results without any omissions. LOD provides detail descriptions of entities to public in RDF triple form. RDF triple is composed of subject, predicates, and objects and presents detail description for an entity. Links in LOD cloud, named identity links, are realized by asserting entities of different RDF triples to be identical. Currently, the identity link is provided with creating a link triple explicitly in which associates its subject and object with source and target entities. Link triples are appended to LOD. With identity links, a knowledge achieves from an LOD can be expanded with different knowledge from different LODs. The goal of LOD cloud is providing opportunity of knowledge expansion to users. Appending link triples to LOD, however, has serious difficulties in discovering identity links between entities one by one notwithstanding the enormous scale of LOD. Newly added entities cannot be reflected to searching results until identity links heading for them are serialized and published to LOD cloud. Instead of creating enormous identity links, we propose LOD to prepare its own link policy. The link policy specifies a set of target LODs to link and constraints necessary to discover identity links to entities on target LODs. On searching, it becomes possible to access newly added entities and reflect them to searching results without any omissions by referencing the link policies. Link policy specifies a set of predicate pairs for discovering identity between associated entities in source and target LODs. For the link policy specification, we have suggested a set of vocabularies that conform to RDFS and OWL. Identity between entities is evaluated in accordance with a similarity of the source and the target entities' objects which have been associated with the predicates' pair in the link policy. We implemented a system "Change Acceptable In-Depth Searching System(CAIDS)". With CAIDS, user's searching request starts from depth_0 LOD, i.e. surface searching. Referencing the link policies of LODs, CAIDS proceeds in-depth searching, next LODs of next depths. To supplement identity links derived from the link policies, CAIDS uses explicit link triples as well. Following the identity links, CAIDS's in-depth searching progresses. Content of an entity obtained from depth_0 LOD expands with the contents of entities of other LODs which have been discovered to be identical to depth_0 LOD entity. Expanding content of depth_0 LOD entity without user's cognition of such other LODs is the implementation of knowledge expansion. It is the goal of LOD cloud. The more identity links in LOD cloud, the wider content expansions in LOD cloud. We have suggested a new way to create identity links abundantly and supply them to LOD cloud. Experiments on CAIDS performed against DBpedia LODs of Korea, France, Italy, Spain, and Portugal. They present that CAIDS provides appropriate expansion ratio and inclusion ratio as long as degree of similarity between source and target objects is 0.8 ~ 0.9. Expansion ratio, for each depth, depicts the ratio of the entities discovered at the depth to the entities of depth_0 LOD. For each depth, inclusion ratio illustrates the ratio of the entities discovered only with explicit links to the entities discovered only with link policies. In cases of similarity degrees with under 0.8, expansion becomes excessive and thus contents become distorted. Similarity degree of 0.8 ~ 0.9 provides appropriate amount of RDF triples searched as well. Experiments have evaluated confidence degree of contents which have been expanded in accordance with in-depth searching. Confidence degree of content is directly coupled with identity ratio of an entity, which means the degree of identity to the entity of depth_0 LOD. Identity ratio of an entity is obtained by multiplying source LOD's confidence and source entity's identity ratio. By tracing the identity links in advance, LOD's confidence is evaluated in accordance with the amount of identity links incoming to the entities in the LOD. While evaluating the identity ratio, concept of identity agreement, which means that multiple identity links head to a common entity, has been considered. With the identity agreement concept, experimental results present that identity ratio decreases as depth deepens, but rebounds as the depth deepens more. For each entity, as the number of identity links increases, identity ratio rebounds early and reaches at 1 finally. We found out that more than 8 identity links for each entity would lead users to give their confidence to the contents expanded. Link policy based in-depth searching method, we proposed, is expected to contribute to abundant identity links provisions to LOD cloud.

Application of MicroPACS Using the Open Source (Open Source를 이용한 MicroPACS의 구성과 활용)

  • You, Yeon-Wook;Kim, Yong-Keun;Kim, Yeong-Seok;Won, Woo-Jae;Kim, Tae-Sung;Kim, Seok-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Purpose: Recently, most hospitals are introducing the PACS system and use of the system continues to expand. But small-scaled PACS called MicroPACS has already been in use through open source programs. The aim of this study is to prove utility of operating a MicroPACS, as a substitute back-up device for conventional storage media like CDs and DVDs, in addition to the full-PACS already in use. This study contains the way of setting up a MicroPACS with open source programs and assessment of its storage capability, stability, compatibility and performance of operations such as "retrieve", "query". Materials and Methods: 1. To start with, we searched open source software to correspond with the following standards to establish MicroPACS, (1) It must be available in Windows Operating System. (2) It must be free ware. (3) It must be compatible with PET/CT scanner. (4) It must be easy to use. (5) It must not be limited of storage capacity. (6) It must have DICOM supporting. 2. (1) To evaluate availability of data storage, we compared the time spent to back up data in the open source software with the optical discs (CDs and DVD-RAMs), and we also compared the time needed to retrieve data with the system and with optical discs respectively. (2) To estimate work efficiency, we measured the time spent to find data in CDs, DVD-RAMs and MicroPACS. 7 technologists participated in this study. 3. In order to evaluate stability of the software, we examined whether there is a data loss during the system is maintained for a year. Comparison object; How many errors occurred in randomly selected data of 500 CDs. Result: 1. We chose the Conquest DICOM Server among 11 open source software used MySQL as a database management system. 2. (1) Comparison of back up and retrieval time (min) showed the result of the following: DVD-RAM (5.13,2.26)/Conquest DICOM Server (1.49,1.19) by GE DSTE (p<0.001), CD (6.12,3.61)/Conquest (0.82,2.23) by GE DLS (p<0.001), CD (5.88,3.25)/Conquest (1.05,2.06) by SIEMENS. (2) The wasted time (sec) to find some data is as follows: CD ($156{\pm}46$), DVD-RAM ($115{\pm}21$) and Conquest DICOM Server ($13{\pm}6$). 3. There was no data loss (0%) for a year and it was stored 12741 PET/CT studies in 1.81 TB memory. In case of CDs, On the other hand, 14 errors among 500 CDs (2.8%) is generated. Conclusions: We found that MicroPACS could be set up with the open source software and its performance was excellent. The system built with open source proved more efficient and more robust than back-up process using CDs or DVD-RAMs. We believe that the operation of the MicroPACS would be effective data storage device as long as its operators develop and systematize it.

  • PDF

Introduction of region-based site functions into the traditional market environmental support funding policy development (재래시장 환경개선 지원정책 개발에서의 지역 장소적 기능 도입)

  • Jeong, Dae-Yong;Lee, Se-Ho
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2005.05a
    • /
    • pp.383-405
    • /
    • 2005
  • The traditional market is foremost a regionally positioned place, wherein the market directly represents regional and cultural centered traits while it plays an important role in the circulation of facilities through reciprocal, informative and cultural exchanges while sewing to form local communities. The traditional market in Korea is one of representative retail businesses and premodern marketing techniques by family owned business of less than five members such as product management, purchase method, and marketing patterns etc. Since the 1990s, the appearance of new circulation-type businesses and large discount convenience stores escalated the loss of traditional competitiveness, increased the living standard of customers, changed purchasing patterns, and expanded the ubiquity of the Internet. All of these changes in external circulation circumstances have led the traditional markets to lose their place in the economy. The traditional market should revive on a regional site basis through the formation of a community of regional neighbors and through knowledge-sharing that leads to the creation of wealth. For the purpose of creating a wealth in a place, the following components are necessary: 1) a facility suitable for the spatial place of the present, 2)trust built through exchanges within the changing market environment, which would simultaneously satisfy customer's desires, 3) international bench marking on cases such as regionally centered TCM (England), BID (USA), and TMO (Japan) so that the market unit of store placement transfers from a spot policy to a line policy, 4)conversion of communicative conception through a surface policy approach centered around a macro-region perspective. The budget of the traditional market funding policy was operational between 2001 and 2004, serving as a counter move to solve the problem of the old traditional market through government intervention in regional economies to promote national economic strength. This national treasury funding project was centered on environmental improvement, research corps, and business modernization through the expenditure of 3,853 hundred million won (Korean currency). However, the effectiveness of this project has yet to be to proven through investigation. Furthermore, in promoting this funding support project, a lack of professionalism among merchants in the market led to constant limitations in comprehensive striving strategies, reduced capabilities in middle-and long-term plan setup, and created reductions in voluntary merchant agreement solutions. The traditional market should go beyond mere physical place and ordinary products creative site strategies employing the communicative approach must accompany these strategies to make the market a new regional and spatial living place. Thus, regarding recent paradigm changes and the introduction of region-based site functions into the traditional market, acquiring a conversion of direction into the newly developed project is essential to reinvestigate the traditional market composed of cultural and economic meanings, for the purpose of the research. Excavating social policy demands through the comparative analysis of domestic and international cases as well as innovative and expert management leadership development for NPO or NGO civil entrepreneurs through advanced case research on present promotion methods is extremely important. Discovering the seeds of the cultural contents industry cored around regional resource usages, commercializing regionally reknowned products, and constructing complex cultural living places for regional networks are especially important. In order to accelerate these solutions, a comprehensive and systemized approach research operated within a mentor academy system is required, as research will reveal distinctive traits of the traditional market in the aging society.

  • PDF

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.

Query-based Answer Extraction using Korean Dependency Parsing (의존 구문 분석을 이용한 질의 기반 정답 추출)

  • Lee, Dokyoung;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.161-177
    • /
    • 2019
  • In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.