• Title/Summary/Keyword: 소셜 컨텍스트 기반 탐지

Search Result 1, Processing Time 0.017 seconds

CoAID+ : COVID-19 News Cascade Dataset for Social Context Based Fake News Detection (CoAID+ : 소셜 컨텍스트 기반 가짜뉴스 탐지를 위한 COVID-19 뉴스 파급 데이터)

  • Han, Soeun;Kang, Yoonsuk;Ko, Yunyong;Ahn, Jeewon;Kim, Yushim;Oh, Seongsoo;Park, Heejin;Kim, Sang-Wook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.149-156
    • /
    • 2022
  • In the current COVID-19 pandemic, fake news and misinformation related to COVID-19 have been causing serious confusion in our society. To accurately detect such fake news, social context-based methods have been widely studied in the literature. They detect fake news based on the social context that indicates how a news article is propagated over social media (e.g., Twitter). Most existing COVID-19 related datasets gathered for fake news detection, however, contain only the news content information, but not its social context information. In this case, the social context-based detection methods cannot be applied, which could be a big obstacle in the fake news detection research. To address this issue, in this work, we collect from Twitter the social context information based on CoAID, which is a COVID-19 news content dataset built for fake news detection, thereby building CoAID+ that includes both the news content information and its social context information. The CoAID+ dataset can be utilized in a variety of methods for social context-based fake news detection, thus would help revitalize the fake news detection research area. Finally, through a comprehensive analysis of the CoAID+ dataset in various perspectives, we present some interesting features capable of differentiating real and fake news.