본고에서는 소셜 빅데이터에서 공공안전에 위협되고 사회적으로 이슈가 되는 재난사건을 추출하기 위한 방법으로 소셜 네트워크상에서 사용자 행동 분석과 시간분석을 반영한 토픽 모델링 기법을 알아본다. 소셜 사용자의 글 수, 리트윗 반응, 활동주기, 팔로워 수, 팔로잉 수 등 사용자의 행동 분석을 통하여 활동적이고 신뢰성 있는 사용자를 분류함으로써 트윗에서 스팸성과 광고성을 제외하고 이슈에 대해 신뢰성 높은 사용자가 쓴 트윗을 중요하게 반영한다. 또한, 트위터 데이터에서 새로운 이슈가 발생한 것을 탐지하기 위해 시간별 핵심어휘 빈도의 분포 변화를 측정하고, 이슈 트윗에 대해 감성 표현 분석을 통해 핵심이슈에 대해 사건 어휘를 추출한다. 소셜 빅데이터의 특성상 같은 날짜에 여러 이슈에 대한 트윗이 많이 생성될 수 있기 때문에, 트윗들을 토픽별로 그룹핑하는 것이 필요하므로, 최근 많이 사용되고 있는 LDA 토픽모델링 기법에 시간 특성과 사용자 특성을 분석한 시간상에서의 중요한 사건 어휘를 반영하고, 해당이슈에 대한 신뢰성 있는 사용자가 쓴 트윗을 중요시 반영하도록 토픽모델링 기법을 개선한 소셜 사건 탐지 방법에 대해 알아본다.
본 논문에서는 소셜 빅데이터에 대한 심층적 언어분석을 통해 이슈를 탐지하고 모니터링하는 소셜위즈덤 시스템을 소개한다. 소셜위즈덤은 키워드의 단순 빈도 정보 외에도 이슈의 신규성, 중요성, 파급력, 관심도, 신뢰도 등을 수치화한 이슈성지수에 기반한 이슈성 측정이 가능하여 정확한 이슈탐지가 가능하다. 또한, 추가적인 정보로 단순 긍부정 분석이 아닌 17 개의 세부감성을 분석해서 제공하고 긍부정에 대한 호불호의 원인분석 정보도 제공하므로, 소셜미디어 분석에 기반한 깊은 인사이트를 제공하여 사용자의 의사결정에 많은 도움을 줄 수 있다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.10a
/
pp.682-683
/
2014
최근 IT업체들은 온라인 상에서 소비자들이 평소에 쏟아내는 의견들을 수집, 축적해서, 원하는 키워드를 중심으로 내용을 분석함으로써, 특정 주제에 대해 어떤 여론이 형성되고 있으며, 여론이 어떻게 전파되고 있는지 경로를 파악할 수 있는 소셜 빅데이터 분석 툴을 경쟁적으로 개발하고 있다. 본 논문에서는 소셜 빅 데이터를 분석함에 있어 이슈를 감지하고 예측하는 기술을 실제 사례에 적용하여 분석한 결과를 고찰해 보고자 한다. 소셜 미디어 데이터 패턴을 비교 분석하고 부정이슈 감지를 위해 부정 여론을 확산시키는데 영향을 미치는 내용과 작성자를 독립변수로 하고, 평균 이슈 도달 시간 및 속도를 종속변수로 정의한다. 부정 여론 형성의 영향력은 트윗수, 리트윗 수를 기준으로 이슈 감지한다. 분석결과 전체 트윗 중 리트윗 메시지가 큰 비중 차지하고 이슈에 대한 버즈가 증가할수록 리트윗 비중이 증가하였으며 크게 확산될 때는 리트윗량이 크게 증가하여 짧은 시간 안에 넓게 확산하였다.
웹 2.0의 적극적인 도입에 따라 소셜 네트워크 기반 커뮤니티 사이트에서는 관련된 콘텐츠를 적절하게 추천하는 것은 중요한 문제로 부각되고 있으며 이로 인해 사용자들의 동향 및 이슈 추출 기법이 중요하게 작용하고 있다. 이러기 위해서 지금까지의 연구에서는 콘텐츠에 포함된 키워드 매칭 방법을 이용하고 있으나 사용자들 간의 연결 관계와 키워드의 중요도를 고려하지 못하고 있다. 본 논문에서는 FOAF 기반의 소셜 네트워크와 del.icio.us에서 제공하는 소셜 북마크 데이터를 기초로 소셜네트워크 분석을 보이며 이를 통한 사용자들 사이에서 중요하게 부각되는 핫 이슈를 추출하는 방법을 제안한다. 본 논문에서 제안하는 핫 이슈 추출 방법을 활용하면 사용자들의 관심 분야 동향파악을 효율적으로 수행할 수 있으며 이를 통해 맞춤형 마케팅 및 콘텐츠 추천이 가능해 진다.
최근 빅데이터 시대를 맞이하여 소셜미디어가 중요한 정보의 소통수단으로 급부상함에 따라 소셜웹 이슈 탐지 및 예측분석 기술이 큰 주목을 받고 있고, 기업 정부 등에서 정치/경제/사회문화적 이슈들에 대한 온라인 동향 분석 및 이슈 예측 기술의 수요가 급증하고 있다. 본고에서는 페이스북, 트위터 등의 소셜미디어에 대한 온라인 동향 분석 및 모니터링 기술 개발의 국내/국외 상용화 및 연구 현황을 소개한다. 또한, 사회적 동향을 분석해서 만들어진 예측모델에 기반해서 이슈의 향후 전개 과정에 대해 정량적으로 예측하는 기술 현황을 국내와 국외로 나누어 소개한다.
최근 사람 간 소통채널인 소셜미디어는 매스미디어 중심의 정보유통의 흐름을 바꿔놓으며 기업, 공공기관 등에서 가치를 찾는 핵심자원으로 관심을 받고 있다. 재난관리도 기존의 정부중심 대응에서 벗어나 소셜미디어, 즉 소셜 빅데이터를 활용한 국민 참여형 재난관리의 필요성이 대두되고 있다. 본 논문에서는 재난관리를 위해 실시간 소셜 빅데이터를 모니터링하는 시스템인 국립재난안전연구원의 소셜 빅보드(Social Big Board)를 소개하고, 이 시스템의 재난이슈 탐지의 정확성 향상을 위해 새롭게 개발된 재난유형별 관련도에 기반한 재난이슈 탐지기법을 설명하며 실험 및 평가결과를 제시하고자 한다.
The Journal of Korean Association of Computer Education
/
v.17
no.2
/
pp.31-38
/
2014
This paper reveals continuity of related events which are occurred and changing from moment to moment accident/events collected from various social media channels. Among them, we especially define the events which have big social influence as "issue event" and investigate the type and characteristics of continuous issue event for each domain. We also introduce a automatic issue detection system in social media text. Based on the extracted issue event results in a particular domain, we analyse the continuity of those events by illustrating in time and place-axis. Furthermore, we identify the relationship between social media in terms of issue events propagation.
Heo, Jeong;Lee, Chung Hee;Oh, Hyo Jung;Yoon, Yeo Chan;Kim, Hyun Ki;Jo, Yo Han;Ock, Cheol Young
KIPS Transactions on Software and Data Engineering
/
v.3
no.12
/
pp.553-564
/
2014
In this paper, we propose the system for automatic generation of issue analysis report based on social big data mining, with the purpose of resolving three problems of the previous technologies in a social media analysis and analytic report generation. Three problems are the isolation of analysis, the subjectivity of experts and the closure of information attributable to a high price. The system is comprised of the natural language query analysis, the issue analysis, the social big data analysis, the social big data correlation analysis and the automatic report generation. For the evaluation of report usefulness, we used a Likert scale and made two experts of big data analysis evaluate. The result shows that the quality of report is comparatively useful and reliable. Because of a low price of the report generation, the correlation analysis of social big data and the objectivity of social big data analysis, the proposed system will lead us to the popularization of social big data analysis.
In accordance with the increased political and social utilization of social media, demands on online trend analysis and monitoring technologies based on social bigdata are also increasing rapidly. In this paper, we define 'risk' as issues which have probability of turn to negative public opinion among big social issues and classify their types in details. To define risk types, we conduct a complete survey on news documents and analyzed characteristics according to issue domains. We also investigate cross-medias analysis to find out how different public media and personalized social media. At the result, we define 58 risk types for 6 domains and developed automatic classification model based on machine learning algorithm. Based on empirical experiments, we prove the possibility of automatic detection for social issue risk in social media.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.3
/
pp.669-677
/
2010
In this paper, we propose a novel project schedule notification and issue tracking system based on a social networking service for project management on a smartphone. The proposed system has a server subsystem and a client subsystem. The server is in charge of enabling a deadline notification and an issue tracking of the project to project participants by exploiting a legacy social networking service. The client running on a smartphone displays timelines of the project schedule using Gantt chart and let the project participant edit their schedule. The proposed system combines the mobility of smartphones and the connectivity of social networking services and apply them to schedule notification and issue tracking, which demonstrates a novel usage of social networking services.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.