• 제목/요약/키워드: 소셜 데이터

검색결과 985건 처리시간 0.029초

온라인 쇼핑몰에서 소셜 네트워크 특성을 고려한 상품 트렌드 분석 기법 (Product Trend Analysis Scheme Considering Social Network Features in Online Shopping Malls)

  • 박수빈;김이나;최도진;박재열;유승훈;송재오;복경수;유재수
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.343-344
    • /
    • 2018
  • 온라인 쇼핑몰에서 소비자들이 원하는 상품을 노출시켜 정보를 제공하기 위해서는 상품의 트렌드 분석에 대한 연구가 필요하다. 본 논문에서는 대량의 SNS 데이터와 서비스 내 사용자 데이터를 결합하여 보다 효율적인 상품 트렌드 분석 기법을 제안한다. 온라인 소셜 네트워크의 대중화로 소비자들은 시공간에 구애받지 않고 상품에 대한 정보를 SNS로 교류할 수 있다. 제안하는 기법은 이 과정에서 발생한 SNS 데이터와 사용자 성향 데이터에 시간 속성을 고려하여 상품 트렌드를 분석한다.

  • PDF

대용량 그래프에서 k-차수 인덱스 테이블을 이용한 RDBMS 기반의 효율적인 최단 경로 탐색 기법 (RDBMS based Efficient Method for Shortest Path Searching over Large Graphs using K-degree Index Table)

  • 홍지혜;한용구;이영구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1186-1188
    • /
    • 2013
  • 최근 소셜 네트워크의 등장과 기술의 발달로 인해 빅 데이터가 등장하였다. 특히, 소셜 네트워크나 웹 데이터 등과 같은 빅 데이터를 이용하는 애플리케이션이 많아지고 있다. 이러한 그래프 데이터는 크기가 매우 방대하여 인-메모리 기법을 통해 연산하기 어렵다. 최근 대용량 그래프 상에서 효율적인 최단 경로 탐색을 위해 부분 최단 경로를 저장하는 인덱스 테이블을 활용한 기법이 제안되었으나, 인덱스 참조율을 고려하지 않아 비효율적이다. 본 논문에서는 인덱스 참조율이 높은 노드의 차수를 이용한 k-차수 인덱스 테이블을 이용한 효율적인 최단 경로 탐색 기법을 제안한다. 실험을 통하여 제안하는 기법이 거리 기반 인덱스를 이용한 기존의 기법에 비해 약 12% 정도 성능이 향상됨을 보였다.

소셜러닝을 적용한 직업교육 성과분석 사례연구 (Case Study on Application of Social Learning in Workforce Education)

  • 이수경;박연정
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권4호
    • /
    • pp.523-534
    • /
    • 2015
  • 소셜러닝은 소셜미디어의 단순한 교육적 활용에서 나아가, '학습자의 참여가 증진되고 동료학습자간의 의사소통과 의견 공유가 주된 학습 활동으로 부각되며, 학습자와 교수자간의 활발한 상호작용에 의하여 학습의 내용이 적응적으로 제공되는 학습' 이다. 본 연구에서는 소셜미디어의 특징과 소셜러닝에 대한 개념 이해를 바탕으로, 소셜러닝 교육과정을 기획, 설계, 개발하고, 실제 직업교육 현장에 적용한 후 그 성과를 분석하였다. 302명이 입과하여 138명이 수료를 한 '유통혁신을 위한 POP 및 품목별 진열기법'을 다룬 소셜러닝 시범운영은 시간흐름에 따른 콘텐츠 제시방식, 진행형 콘텐츠와 학습자간 활발한 상호작용을 지원하는 플랫폼 개발, 소형 스마트 기기에 의한 효과적 직무교육 지원체제가, 핵심적 특징으로 적용되었다. 본 연구에서는 학습관리시스템에 남겨진 로그데이터를 통한 학습행태 분석, 온라인 활동과 과제로 구성된 평가결과 및 수료율 분석, 설문조사를 통한 학습자 특성 및 만족도 분석이 실시되었다. 종합적 분석에 의하여 소셜러닝의 개선사항과 향후 발전방향을 제언하였다.

소셜 빅데이터를 이용한 영화 흥행 요인 분석 (Movie Box-office Analysis using Social Big Data)

  • 이오준;박승보;정다울;유은순
    • 한국콘텐츠학회논문지
    • /
    • 제14권10호
    • /
    • pp.527-538
    • /
    • 2014
  • 수요 예측은 영화 산업에서 매우 중요한 문제이다. 최근 들어 트위터(Twitter), 페이스북(Facebook)과 같은 소셜미디어의 비정형 텍스트 데이터를 이용하여 영화 흥행을 예측하고 분석하는 시도들이 활발하게 이루어지고 있다. 기존에는 주로 데이터의 주기별 변화량을 측정하여 데이터 양과 영화 흥행간의 상관성을 분석하거나 데이터에 대해 감성의 극성 값을 부여하는 오피니언 마이닝을 통해 영화의 흥행 추이를 예측하였다. 하지만 이러한 정량적 접근만으로는 관객들이 영화를 선택하게 된 근거나 영화의 어떤 속성을 선호하는지를 알 수 없기 때문에 영화의 흥행 요인을 밝히는데 한계가 있었다. 따라서 본 연구는 트위터 데이터를 수집한 후 빈도수 측정을 통해 트윗의 내용을 대표하는 토픽(topic) 키워드를 추출하여 관객들의 관심을 반영하는 영화적 속성들이 무엇인지를 밝히고, 그 속성들에 대한 관객들의 반응을 분석함으로써 영화의 흥행에 영향을 미친 요인들을 제시한다.

빅데이터를 이용한 기술 시장동향 예측 (Forecasting Market trends of technologies using Bigdata)

  • 최미선;조용확;김진화
    • 산업융합연구
    • /
    • 제21권10호
    • /
    • pp.21-28
    • /
    • 2023
  • 오늘날 빅데이터 활용의 필요성이 증가하면서 개인, 기업, 국가 등에서 SNS 데이터를 포함해 빅데이터를 이용한 다양한 분석 활동들이 이루어지고 있다. 그러나 기존 기술 시장 동향 예측연구는 전문가에 의존적이거나 특허나 문헌 연구 기반 데이터를 이용한 연구가 주로 진행되어 왔으며 빅데이터를 활용한 객관적인 기술 예측이 필요하다. 이에 본 연구는 소셜네트워크서비스(SNS)의 데이터로 의사결정나무 분석, 시각화 분석, 백분율 분석을 통해 미래 기술을 예측하는 모델을 제시하고자 한다. 연구 결과 백분율 분석은 다른 분석 결과에 비해 긍정적인 기술을 더 잘 예측할 수 있었고, 시각화 분석은 다른 분석 결과에 비해 부정적인 기술을 더 잘 예측할 수 있었다. 의사결정나무 분석도 의미 있는 예측은 가능하였다.

소셜 미디어 참여에 관한 연구 동향과 쟁점의 변화: 네트워크 분석과 클러스터링 기법을 활용한 메타 분석을 중심으로 (Trends in Social Media Participation and Change in ssues with Meta Analysis Using Network Analysis and Clustering Technique)

  • 신현보;선형주;이준기
    • 한국빅데이터학회지
    • /
    • 제4권1호
    • /
    • pp.99-118
    • /
    • 2019
  • 본 연구는 소셜 미디어 참여 관련 연구 베타분석을 위해 네트워크 분석과 클러스터링 기법을 활용하였다. 주경로 분석 결과 37개의 주요 연구가 추출되었고 커뮤니티 관련 네트워크와 뉴 미디어 관련 네트워크 두 가지로 구분되었다. 연결망 분석과 클러스터링 결과 네가지 클러스터가 형성되었다. 본 연구는 학술 데이터를 활용해 연구 동향을 거시적으로 파악하며 그 방법론으로 네트워크 분석과 기계학습을 활용하였다는 학술적 의의를 가진다.

  • PDF

소셜데이터 감성분석을 통한 사용자의 호감도 분석 (Favorable analysis of users through the social data analysis based on sentimental analysis)

  • 이민규;손효정;성백민;김종배
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.438-440
    • /
    • 2014
  • 최근 폭발적으로 증가하는 SNS서비스의 상업적으로 이용하려는 움직임이 활발하다. 따라서 본 논문은 실시간 SNS 환경에서 제조기업과 제품의 평판에 관련된 정보를 정확하게 분석 할 수 있는 방안을 제시한다. 크롤링 방식으로 수집된 SNS의 텍스트 데이터들에 대한 형태소 분석을 수행하여 단어 간 연관성을 파악한다. 또, 문장에서 추출된 형태소는 구축된 감성사전을 통해 통계적으로 분석하여 이를 시각화 하여 보여준다. 이때, 추출된 단어가 감성사전에 존재하지 않을 경우 이를 자동으로 추가하는 기법을 제안한다.

  • PDF

도시 지역 트윗 데이터의 시간대별 공간분포 특성 - 부산광역시를 사례로 - (A Study on the Spatial Patterns of Tweet Data for Urban Areas by Time - A Case of Busan City -)

  • 구자용
    • 지적과 국토정보
    • /
    • 제46권2호
    • /
    • pp.269-281
    • /
    • 2016
  • 최근 공간 정보 분야에서 소셜 미디어와 같은 공간 빅 데이터의 분석과 처리에 많은 관심이 집중되고 있다. 본 연구에서는 공간 빅 데이터 분석의 한 사례로서 트윗 데이터가 가지고 있는 위치 정보와 시간 정보를 바탕으로 시간대별로 공간분포를 분석하고 그 특성을 파악하였다. 부산시 지역의 트윗 데이터를 수집하고, 시간대별 공간분석을 통하여 그 특성을 파악하여, 그 지역의 토지이용 특성과 비교하였다. 부산시 지역의 트윗 데이터를 시간대에 따라 평일 주간, 평일 야간, 휴일 주간, 휴일 야간으로 구분하고, 각 시간대별로 공간적 분포 특성을 파악하여, 공간적으로 집중된 지역의 토지이용 특성과 비교하였다. 본 연구의 결과 트윗 데이터는 시간대에 따라 공간분포가 다르게 나타나고 있으며, 이는 그 지역의 일상생활 패턴과 토지이용 특성을 어느 정도 반영하고 있었다. 본 연구에서는 공간정보 분야에서 트윗 데이터와 같은 소셜 미디어 자료의 분석을 통한 활용 가능성을 제시하였다. 향후 토지 계획이나 도시 계획 등의 분야에서 다양한 소셜 미디어 자료를 활용할 수 있을 것으로 전망된다.

빅데이터 기반의 텍스트를 활용한 개인 행복도 분석 모니터링 시스템 아키텍쳐 설계 (Peronsal Happiness Analysis using Big Data Based Text Design Monitoring System Architecture Design)

  • 심종성;김희철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.504-506
    • /
    • 2019
  • 전 세계의 수많은 SNS의 텍스트와 일기의 데이터가 업로드 되지만 그 데이터들을 내용을 공유하고 기록하는 것에 미치지 않는다. 일반적으로 소셜빅데이터는 취향, 관심사 파악에 사용되고 있다. 하지만 자신의 상태와 정보를 분석하고 나타내주는 시스템이 필요하다. 따라서 본 논문에서는 행복 다이어리 시스템은 SNS의 데이터와 자체의 일기를 적어 그것들을 빅데이터 시스템에 저장하고 감성분석을 이용하여 자신의 일기와 SNS데이터를 통해 행복도를 나타낼 수 있는 시스템 설계를 다룬다.

  • PDF

모바일 소셜 네트워크에서 안전한 데이터 공유를 위한 애드혹 네트워크 보안 메커니즘 (Ad hoc network Security Mechanism for Secure Data Sharing in Mobile Social Network)

  • 김가린;홍충선
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(D)
    • /
    • pp.363-365
    • /
    • 2012
  • 최근 빠르게 확산되고 있는 소셜 네트워크 서비스(Social Network Service)는 사용자의 인맥을 관리하며 새로운 인맥을 형성하는 것을 목표로 한다. 또한 사용자들이 자신의 관심사에 관한 지식이나 정보를 공개함으로써 정보의 효율성을 높이고 다른 사용자들에게 정보를 전파한다. 하지만 현재의 소셜 네트워크 서비스는 새로운 인맥을 형성하는 것보다 실제 사회에서의 인맥을 가상의 공간에서도 유지하고 관리하여 실제로 만나지 않더라도 관계를 유지할 수 있도록 하는 용도로 사용되어 소셜 네트워크의 목표를 달성하지 못하고 있다. 하지만 특정한 공간의 동일한 관심사를 가진 사람들 간의 제한적 정보 공유는 소셜 네트워의 단점을 보안하고 궁극적 목표를 달성할 수 있다. 또한 특정 관심사를 기반으로 그룹을 생성함으로써 정보의 신뢰도를 높이며 새로운 인맥을 형성에도 효과적 일 것이다. 하지만 이러한 네트워크는 모바일 환경의 특징으로 인해 빠르게 변화할 수 있으며 위치를 기반으로 특정 공간의 다른 사용자들과 통신함으로 완전히 새로운 인맥을 형성하게 된다. 그러므로 안전하게 신뢰관계를 구축하기위해 사용자의 평판 관리가 필요하다. 본 논문에서는 소셜 네트워크에서 동일한 관심사를 가진 폐쇄적 정보공유에서의 악의적 노드의 고립을 위한 평판 메커니즘을 제안한다.