온라인 쇼핑몰에서 소비자들이 원하는 상품을 노출시켜 정보를 제공하기 위해서는 상품의 트렌드 분석에 대한 연구가 필요하다. 본 논문에서는 대량의 SNS 데이터와 서비스 내 사용자 데이터를 결합하여 보다 효율적인 상품 트렌드 분석 기법을 제안한다. 온라인 소셜 네트워크의 대중화로 소비자들은 시공간에 구애받지 않고 상품에 대한 정보를 SNS로 교류할 수 있다. 제안하는 기법은 이 과정에서 발생한 SNS 데이터와 사용자 성향 데이터에 시간 속성을 고려하여 상품 트렌드를 분석한다.
최근 소셜 네트워크의 등장과 기술의 발달로 인해 빅 데이터가 등장하였다. 특히, 소셜 네트워크나 웹 데이터 등과 같은 빅 데이터를 이용하는 애플리케이션이 많아지고 있다. 이러한 그래프 데이터는 크기가 매우 방대하여 인-메모리 기법을 통해 연산하기 어렵다. 최근 대용량 그래프 상에서 효율적인 최단 경로 탐색을 위해 부분 최단 경로를 저장하는 인덱스 테이블을 활용한 기법이 제안되었으나, 인덱스 참조율을 고려하지 않아 비효율적이다. 본 논문에서는 인덱스 참조율이 높은 노드의 차수를 이용한 k-차수 인덱스 테이블을 이용한 효율적인 최단 경로 탐색 기법을 제안한다. 실험을 통하여 제안하는 기법이 거리 기반 인덱스를 이용한 기존의 기법에 비해 약 12% 정도 성능이 향상됨을 보였다.
소셜러닝은 소셜미디어의 단순한 교육적 활용에서 나아가, '학습자의 참여가 증진되고 동료학습자간의 의사소통과 의견 공유가 주된 학습 활동으로 부각되며, 학습자와 교수자간의 활발한 상호작용에 의하여 학습의 내용이 적응적으로 제공되는 학습' 이다. 본 연구에서는 소셜미디어의 특징과 소셜러닝에 대한 개념 이해를 바탕으로, 소셜러닝 교육과정을 기획, 설계, 개발하고, 실제 직업교육 현장에 적용한 후 그 성과를 분석하였다. 302명이 입과하여 138명이 수료를 한 '유통혁신을 위한 POP 및 품목별 진열기법'을 다룬 소셜러닝 시범운영은 시간흐름에 따른 콘텐츠 제시방식, 진행형 콘텐츠와 학습자간 활발한 상호작용을 지원하는 플랫폼 개발, 소형 스마트 기기에 의한 효과적 직무교육 지원체제가, 핵심적 특징으로 적용되었다. 본 연구에서는 학습관리시스템에 남겨진 로그데이터를 통한 학습행태 분석, 온라인 활동과 과제로 구성된 평가결과 및 수료율 분석, 설문조사를 통한 학습자 특성 및 만족도 분석이 실시되었다. 종합적 분석에 의하여 소셜러닝의 개선사항과 향후 발전방향을 제언하였다.
수요 예측은 영화 산업에서 매우 중요한 문제이다. 최근 들어 트위터(Twitter), 페이스북(Facebook)과 같은 소셜미디어의 비정형 텍스트 데이터를 이용하여 영화 흥행을 예측하고 분석하는 시도들이 활발하게 이루어지고 있다. 기존에는 주로 데이터의 주기별 변화량을 측정하여 데이터 양과 영화 흥행간의 상관성을 분석하거나 데이터에 대해 감성의 극성 값을 부여하는 오피니언 마이닝을 통해 영화의 흥행 추이를 예측하였다. 하지만 이러한 정량적 접근만으로는 관객들이 영화를 선택하게 된 근거나 영화의 어떤 속성을 선호하는지를 알 수 없기 때문에 영화의 흥행 요인을 밝히는데 한계가 있었다. 따라서 본 연구는 트위터 데이터를 수집한 후 빈도수 측정을 통해 트윗의 내용을 대표하는 토픽(topic) 키워드를 추출하여 관객들의 관심을 반영하는 영화적 속성들이 무엇인지를 밝히고, 그 속성들에 대한 관객들의 반응을 분석함으로써 영화의 흥행에 영향을 미친 요인들을 제시한다.
오늘날 빅데이터 활용의 필요성이 증가하면서 개인, 기업, 국가 등에서 SNS 데이터를 포함해 빅데이터를 이용한 다양한 분석 활동들이 이루어지고 있다. 그러나 기존 기술 시장 동향 예측연구는 전문가에 의존적이거나 특허나 문헌 연구 기반 데이터를 이용한 연구가 주로 진행되어 왔으며 빅데이터를 활용한 객관적인 기술 예측이 필요하다. 이에 본 연구는 소셜네트워크서비스(SNS)의 데이터로 의사결정나무 분석, 시각화 분석, 백분율 분석을 통해 미래 기술을 예측하는 모델을 제시하고자 한다. 연구 결과 백분율 분석은 다른 분석 결과에 비해 긍정적인 기술을 더 잘 예측할 수 있었고, 시각화 분석은 다른 분석 결과에 비해 부정적인 기술을 더 잘 예측할 수 있었다. 의사결정나무 분석도 의미 있는 예측은 가능하였다.
본 연구는 소셜 미디어 참여 관련 연구 베타분석을 위해 네트워크 분석과 클러스터링 기법을 활용하였다. 주경로 분석 결과 37개의 주요 연구가 추출되었고 커뮤니티 관련 네트워크와 뉴 미디어 관련 네트워크 두 가지로 구분되었다. 연결망 분석과 클러스터링 결과 네가지 클러스터가 형성되었다. 본 연구는 학술 데이터를 활용해 연구 동향을 거시적으로 파악하며 그 방법론으로 네트워크 분석과 기계학습을 활용하였다는 학술적 의의를 가진다.
최근 폭발적으로 증가하는 SNS서비스의 상업적으로 이용하려는 움직임이 활발하다. 따라서 본 논문은 실시간 SNS 환경에서 제조기업과 제품의 평판에 관련된 정보를 정확하게 분석 할 수 있는 방안을 제시한다. 크롤링 방식으로 수집된 SNS의 텍스트 데이터들에 대한 형태소 분석을 수행하여 단어 간 연관성을 파악한다. 또, 문장에서 추출된 형태소는 구축된 감성사전을 통해 통계적으로 분석하여 이를 시각화 하여 보여준다. 이때, 추출된 단어가 감성사전에 존재하지 않을 경우 이를 자동으로 추가하는 기법을 제안한다.
최근 공간 정보 분야에서 소셜 미디어와 같은 공간 빅 데이터의 분석과 처리에 많은 관심이 집중되고 있다. 본 연구에서는 공간 빅 데이터 분석의 한 사례로서 트윗 데이터가 가지고 있는 위치 정보와 시간 정보를 바탕으로 시간대별로 공간분포를 분석하고 그 특성을 파악하였다. 부산시 지역의 트윗 데이터를 수집하고, 시간대별 공간분석을 통하여 그 특성을 파악하여, 그 지역의 토지이용 특성과 비교하였다. 부산시 지역의 트윗 데이터를 시간대에 따라 평일 주간, 평일 야간, 휴일 주간, 휴일 야간으로 구분하고, 각 시간대별로 공간적 분포 특성을 파악하여, 공간적으로 집중된 지역의 토지이용 특성과 비교하였다. 본 연구의 결과 트윗 데이터는 시간대에 따라 공간분포가 다르게 나타나고 있으며, 이는 그 지역의 일상생활 패턴과 토지이용 특성을 어느 정도 반영하고 있었다. 본 연구에서는 공간정보 분야에서 트윗 데이터와 같은 소셜 미디어 자료의 분석을 통한 활용 가능성을 제시하였다. 향후 토지 계획이나 도시 계획 등의 분야에서 다양한 소셜 미디어 자료를 활용할 수 있을 것으로 전망된다.
전 세계의 수많은 SNS의 텍스트와 일기의 데이터가 업로드 되지만 그 데이터들을 내용을 공유하고 기록하는 것에 미치지 않는다. 일반적으로 소셜빅데이터는 취향, 관심사 파악에 사용되고 있다. 하지만 자신의 상태와 정보를 분석하고 나타내주는 시스템이 필요하다. 따라서 본 논문에서는 행복 다이어리 시스템은 SNS의 데이터와 자체의 일기를 적어 그것들을 빅데이터 시스템에 저장하고 감성분석을 이용하여 자신의 일기와 SNS데이터를 통해 행복도를 나타낼 수 있는 시스템 설계를 다룬다.
최근 빠르게 확산되고 있는 소셜 네트워크 서비스(Social Network Service)는 사용자의 인맥을 관리하며 새로운 인맥을 형성하는 것을 목표로 한다. 또한 사용자들이 자신의 관심사에 관한 지식이나 정보를 공개함으로써 정보의 효율성을 높이고 다른 사용자들에게 정보를 전파한다. 하지만 현재의 소셜 네트워크 서비스는 새로운 인맥을 형성하는 것보다 실제 사회에서의 인맥을 가상의 공간에서도 유지하고 관리하여 실제로 만나지 않더라도 관계를 유지할 수 있도록 하는 용도로 사용되어 소셜 네트워크의 목표를 달성하지 못하고 있다. 하지만 특정한 공간의 동일한 관심사를 가진 사람들 간의 제한적 정보 공유는 소셜 네트워의 단점을 보안하고 궁극적 목표를 달성할 수 있다. 또한 특정 관심사를 기반으로 그룹을 생성함으로써 정보의 신뢰도를 높이며 새로운 인맥을 형성에도 효과적 일 것이다. 하지만 이러한 네트워크는 모바일 환경의 특징으로 인해 빠르게 변화할 수 있으며 위치를 기반으로 특정 공간의 다른 사용자들과 통신함으로 완전히 새로운 인맥을 형성하게 된다. 그러므로 안전하게 신뢰관계를 구축하기위해 사용자의 평판 관리가 필요하다. 본 논문에서는 소셜 네트워크에서 동일한 관심사를 가진 폐쇄적 정보공유에서의 악의적 노드의 고립을 위한 평판 메커니즘을 제안한다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.