• 제목/요약/키워드: 소셜미디어 알고리즘 분석

검색결과 36건 처리시간 0.031초

소셜 이미지 분류를 위한 클러스터링 알고리즘 기반 트레이닝 집합 획득 기법의 비교 (A Study on Comparison of Clustering Algorithm-based Methods for Acquiring Training Sets for Social Image Classification)

  • 정진우;이동호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.1294-1297
    • /
    • 2011
  • 최근, Flickr, YouTube 와 같은 사용자 참여형 미디어 공유 및 검색 사이트가 폭발적으로 증가하면서, 이를 멀티미디어 정보 검색 서비스에 효과적으로 활용하기 위한 다양한 연구들이 시도되고 있다. 특히, 이미지에 할당되어 있는 태그를 이용하여 이미지를 효과적으로 검색하기 위한 연구가 활발히 진행 중이다. 그러나 사용자들에 의해 제공되는 소셜 이미지들은 매우 다양한 범위와 주제를 가지고 있기 때문에, 소셜 이미지들의 분류 및 태그 할당을 위한 트레이닝 집합의 획득이 쉽지 않다는 한계점을 가지고 있다. 본 논문에서는 데이터 군집화를 위한 클러스터링 알고리즘들 중 K-Means, K-Medoids, Affinity Propagation 을 활용하여 소셜 이미지 집합으로부터 트레이닝 집합을 획득하기 위한 방법들을 살펴 본다. 또한, 각 알고리즘으로부터 획득한 트레이닝 집합을 이용하여 소셜 이미지를 분류한 결과를 비교 분석한다.

소셜미디어에서 에코챔버에 의한 필터버블 현상 개선 방안 연구 (A Study on the Improvement of Filter Bubble Phenomenon by Echo Chamber in Social Media)

  • 조진형;김규정
    • 한국콘텐츠학회논문지
    • /
    • 제22권5호
    • /
    • pp.56-66
    • /
    • 2022
  • 최근 소셜미디어로 접하는 정보 증가로 알고리즘 기반 추천 형식은 사용자 정보에 기반하여 선별적으로 정보를 제공하는데, 이러한 알고리즘은 자주 에코챔버(Echo Chamber)에 의한 필터버블(FilterBuble) 효과를 일으킨다. 에코챔버는 밀폐된 시스템 안에서만 이루어지는 의사소통으로 인해 신념이 증폭되거나 강화되는 현상을 의미하고 필터버블은 정보 제공자가 이용자의 관심사에 맞춰 맞춤형 정보를 제공하여 이용자는 필터링된 정보만 접하게 되는 현상을 의미한다. 본 연구의 목적은 이러한 에코챔버에 의한 필터버블 현상을 개선하는 방안으로 정보를 효율적으로 선별하는 방법을 제시하는 것이다. 연구 진행 방법은 유튜브, 페이스북, 그리고 아마존에서 사용되는 추천 알고리즘을 분석하였다. 본 연구에서는 추천 알고리즘으로 생기는 문제점에 대해서 소셜미디어 사용자의 비판적 사고능력 훈련이나 자기보존법칙에 따른 객관적 윤리 기준 강화 등의 인문학적 해결 방안과 모델 기반 협력 필터링이나 교차적 추천 방식의 기술적 해결 방안을 제시하였다. 결과적으로 추천 알고리즘은 지속적 기술 보완과 새로운 기법 개발을 위한 노력이 이루어져야 하며, 소셜미디어를 대하는 사용자는 비판적 사고 훈련과 정치적 의사소통 교육을 통해 인지부조화를 이겨내고 확증편향에 빠지지 않도록 하는 인문학적 노력이 병행되어야 한다.

소셜미디어를 이용한 기록관리기관의 기록서비스 혁신 방안 연구: 경남기록원과 서울기록원을 중심으로 (A Study on Innovation Plan of Archives' Recording Service using Social Media: Focused on Gyeongnam Archives and Seoul Metropolitan Archives)

  • 김예지;김익한
    • 한국기록관리학회지
    • /
    • 제22권2호
    • /
    • pp.1-25
    • /
    • 2022
  • 오늘날 대부분의 아카이브가 소셜미디어를 통한 기록서비스를 제공하고 있지만, 효과는 매우 저조하다. 본 연구는 영구기록물관리기관이자 광역지방자치단체 지방기록물관리기관인 경남기록원과 서울기록원을 중심으로 소셜미디어 기록서비스가 미진한 원인을 분석하여 개선방안을 제시하고, 고전적인 기록서비스와 소셜미디어가 상호 성장하여 시너지효과를 일으킬 수 있는 방안의 설계를 목적으로 하였다. 문헌연구를 통해 소셜미디어별 특성과 메커니즘을 파악하였으며, 현황 분석을 통해 경남기록원과 서울기록원의 소셜미디어 운영 실태를 파악하고, 내부 문건을 검토하여 공통적인 문제점을 도출했다. 보다 상세한 분석을 위해 기관 기록서비스 담당자와 인터뷰를 진행했으며, 국내 유관기관과 해외 아카이브의 소셜미디어 운영 사례를 분석하여 아카이브에 적용할 수 있는 방안을 검토했다. 이를 바탕으로 새로운 기록서비스 프로세스를 구축하고, 소셜미디어별 전략적 운영 방안을 제안함과 동시에 기존의 기록서비스와 상호성장 할 수 있는 방안을 설계하였다.

다국어 소셜미디어에 대한 감성분석 방법 개발: 한국어-중국어를 중심으로 (A Method of Analyzing Sentiment Polarity of Multilingual Social Media: A Case of Korean-Chinese Languages)

  • 최미나;진윤선;권오병
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.91-111
    • /
    • 2016
  • 소비자들이 소셜미디어 상에 기록한 글을 통해 기업은 제품 또는 기업 이미지에 대한 감성분석을 수행하는데 이는 소셜미디어 기반 마케팅에서 중요한 활동 중에 하나다. 특히 글로벌 소셜미디어의 경우 국적을 불문하고 다양한 고객이 늘어남에 따라 여러 언어권의 소비자들이 각자의 언어로 다양한 의견을 표명하고 있다. 이처럼 다양한 언어로 작성된 텍스트를 감성분석하기 위해서는 기존 방법과 달리 동일한 언어로 통일시켜야 하는 번역 작업이 필요하다. 하지만 번역을 하게 될 경우, 언어와 관련된 배경이나 문화, 용어사용의 차이 등으로 본래 문서에 있는 모든 단어나 문법을 정확히 표현할 수 없는 문제점이 있다. 따라서 본 연구에서는 다중 언어로 수집되는 텍스트를 번역하지 않고 해당 언어별로 텍스트를 분리한 다음 감성분석을 진행하여 각각의 극성치를 종합하는 방법을 제안하고자 한다. 본 연구에서 제안한 다국어 감성분석 알고리즘을 검증하기 위해 다중언어 문장을 한국어, 중국어로 번역한 감성분석의 극성치 편차인 RMSE 값을 비교하였다. 그 결과, 번역을 통한 다중언어의 감성분석보다 언어별로 분리한 감성값이 실제 감성값에 가장 근접하는 것으로 나타나 본 연구에서 제안한 방법론의 우수성을 입증하였다. 본 연구는 다수의 유사한 연구에서 사용했던 알고리즘을 사용하지 않고 원문 그대로 다중언어 감성분석을 시도했다는 점에서 의의가 있다.

소셜 미디어 앱 리뷰에서의 감성 분석 연구: 인스타그램 중심으로 (Research on Sentiment Analysis in Social Media App Reviews: Focusing on Instagram)

  • 이문기;우위항
    • 감성과학
    • /
    • 제27권1호
    • /
    • pp.69-80
    • /
    • 2024
  • 본 연구는 Google Play에서 수집된 Instagram 사용자 리뷰에 대한 심층 분석을 통해, 이 연구는 애플리케이션의 성능과 사용자 만족도에 대한 중요한 통찰력을 얻고자 한다. 텍스트 마이닝과 감성 분석 기술을 활용하여 사용자 리뷰에 담긴 감성과 의견을 체계적으로 파악하며, 이를 통해 앱의 개선점과 사용자 경험을 깊이 이해하려고 한다. 인스타그램 리뷰가 사용자들의 다양한 경험을 어떻게 반영하는지, 그리고 앱의 장단점을 어떻게 드러내는지를 분석한다. 이를 위해 나이브 베이즈 알고리즘을 사용한 감성 분석을 수행하며, 이 결과는 인스타그램 서비스 개선에 도움이 될 것으로 기대된다. 연구는 또한 개발자들이 사용자 피드백을 더 잘 이해하고 활용하는 데 도움을 주며, 결국 사용자 만족도를 향상시키는 데 기여할 것으로 예상된다. 이 연구는 소셜 미디어 사용 패턴과 사용자 의견의 복잡한 관계를 탐색하고, 이를 통해 더 나은 사용자 경험을 제공하는 방안을 모색한다.

소셜 북마킹 시스템에서의 북마크와 태그 정보를 활용한 웹 콘텐츠 랭킹 알고리즘 (A Web Contents Ranking Algorithm using Bookmarks and Tag Information on Social Bookmarking System)

  • 박수진;이시화;황대훈
    • 한국멀티미디어학회논문지
    • /
    • 제13권8호
    • /
    • pp.1245-1255
    • /
    • 2010
  • 현재 웹 2.0 환경에서의 핵심 기술 중 하나는 사용자가 관심 있는 웹페이지를 태깅 및 북마킹 하는 소셜 북마킹 기술이다. 소셜 북마킹은 웹 콘텐츠에 태깅된 북마크 정보 및 태깅 결과를 기반으로 검색, 분류, 공유를 통해 효율적인 정보 제공을 주목적으로 하고 있다. 그러나 현재 소셜 북마킹 시스템들은 웹 콘텐츠의 사용자들의 관심 정도를 측정할 수 있는 북마크 수 및 검색과 분류를 목적으로 하는 태그 정보를 각각 독립적으로 검색에 활용하는 방식을 사용하고 있다. 이는 소셜 북마킹 시스템에서 중요한 특징을 가지는 북마크와 태깅 기술을 효율적으로 활용하지 못하는 결과가 된다. 이에 본 연구에서는 태그 클러스터링을 통한 연관 태그 추출에 관한 선행연구를 기반으로, 북마크 정보와 혼합하기 위한 웹 콘텐츠 랭킹 알고리즘을 제안하였다. 또한 제안 알고리즘의 효율성 분석을 위해 기존 검색 방법론들과의 비교평가를 시행하였으며, 그 결과 본 연구의 핵심적인 특징인 북마크와 태그 정보를 함께 활용한 소셜 북마크 시스템이 기존 시스템보다 효율적인 검색결과를 도출하였다.

소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구 (Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis)

  • 강창민;어균선;이건창
    • 경영정보학연구
    • /
    • 제24권1호
    • /
    • pp.1-19
    • /
    • 2022
  • 온라인 사용자들이 소셜 미디어상에 올린 온라인 리뷰 속 숨겨진 감정을 분석하는 감성분석은 소셜미디어의 확산에 힘입어 많은 관심을 받고 있다. 본 연구는 기존 연구들과 차별화된 방법으로 감성분석을 시도하기 위하여 베이지안 네트워크에 기반한 감성 분석 모델을 제안한다. 모델에는 MBFS(Markov Blanket-based Feature Selection)가 속성 선택 기법으로 사용된다. MBFS의 성과를 실증적으로 증명하기 위하여 소셜미디어인 Yelp의 리뷰 데이터를 활용하였다. 벤치마킹 속성 선택 기법으로는 상관관계기반 속성 선택, 정보획득 속성 선택, 획득비율 속성 선택을 사용하였다. 한편, 해당 속성선택방법을 토대로 4개의 머신러닝 알고리즘을 이용하여 분류성과를 비교하였다. 나아가 MBFS로 선택된 속성들 간 인과관계를 확인하고자 베이지안 네트워크를 통해 What-if 분석을 실시하였다. 본 연구에서 택한 머신러닝 분류기는 베이지안 네트워크 기반의 TAN (Tree Augmented Naive Bayes), NB (Naive Bayes), S-Spouses(Sons & Spouses), A-markov (Augmented Markov Blanket)이다. 성과분석 결과 본 연구에서 제안한 MBFS 방법이 정확도, 정밀도, F1점수 측면에서 벤치마킹 방법보다 더 우수한 성과를 나타내었다.

소셜 미디어를 활용한 아토피 치료법 효과 분석 모델 (An Analytical Effect Model for Atopic Therapy Using Social Media)

  • 임영서;이소영;이지나;류보경;김현희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.742-745
    • /
    • 2019
  • SNS 의 발달로 이를 활용한 제품의 광고가 활발하게 이루어지고 있다. 다양한 제품군 중에서도 사용자의 피부 및 건강의 개선 효과가 나타나는 화장품, 건강보조제 등은 후기 글을 보고 실제 효과를 판단하기에 어려움이 있다. 이는 많은 양의 광고에 가려진 실질적 후기를 찾는 것이 어렵고, 포스팅의 전문을 읽는 것은 비효율적이라는 점에서 기인한다고 할 수 있다. 본 논문에서는 소셜 미디어를 바탕으로 아토피 치료법의 효과를 분석할 수 있는 효과 분석 모델을 개발하고 그 결과를 제시하였다. 먼저 많은 후기가 존재하는 키워드를 기반으로 최대 1000 개의 블로그 포스팅을 수집하였고, 광고성 글을 제외하는 자동 처리 알고리즘을 실시하였다. 다음으로 각각의 후기 글에 나타난 효과를 한눈에 알아볼 수 있도록 점수화하는 효과 분석 알고리즘을 제안하고 실험하였다. 실험결과 감마리놀렌산, 플라즈마, 락토바실러스 등이 긍정적 효과가 있는 치료법으로 나타났다. 본 논문에서 제시한 알고리즘은 제품의 효과를 점수화할 수 있으므로 아토피 치료법에 한정되지 않고, 해당 제품군인 화장품 및 건강보조제 등에 다양하게 적용될 수 있을 것으로 보인다.

준지도학습을 통한 세부감성 어휘 구축 (Fine-grained Sentiment Lexicon Construction via Semi-supervised Learning)

  • 조요한;오효정;이충희;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2013년도 제25회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.33-38
    • /
    • 2013
  • 소셜미디어를 통한 여론분석과 브랜드 모니터링에 대한 요구가 증가하면서, 빅데이터로부터 감성을 분석하는 기술에 대한 필요가 늘고 있다. 이를 위해, 본 논문에서는 단순 긍/부정 감성이 아닌 20종류의 세분화된 감성을 분석하기 위한 감성어휘 구축 알고리즘을 제시한다. 감성어휘 구축을 위해서는 준지도학습을 사용하였으며, 도메인에 특화되지 않은 일반 감성어휘를 구축하도록 학습되었다. 학습된 감성어휘를 인물, 스마트기기, 정책 등 다양한 도메인의 트위터 데이터에 적용하여 세부감성을 분석한 결과, 알고리즘의 특성상 재현율이 낮다는 한계를 가지고 있었으나, 대부분의 감성에 대해 높은 정확도를 지닌 감성어휘를 구축할 수 있었고, 감성을 직간접적으로 나타내는 표현들을 학습할 수 있었다.

  • PDF

연관 태그 및 유사 사용자 가중치를 이용한 웹 콘텐츠 랭킹 시스템 (A Web Contents Ranking System using Related Tag & Similar User Weight)

  • 박수진;이시화;황대훈
    • 한국멀티미디어학회논문지
    • /
    • 제14권4호
    • /
    • pp.567-576
    • /
    • 2011
  • 웹 2.0의 발전에 따라 다양한 기술들이 제공되며 그 중 대두되는 기술로 사용자가 관심 있는 웹페이지를 태깅 및 북마킹하는 소셜 북마킹 기술이다. 그러나 현재 소셜 북마킹 시스템들은 웹 콘텐츠의 중요 정보인 다른 사용자들의 관심 정도를 측정할 수 있는 북마크 수 및 검색과 분류를 목적으로 하는 태그 정보를 각각 독립적으로 검색에 활용하며 또한, 다른 사용자들과의 유사도를 반영하지 못하여 소셜 북마킹 시스템의 특징을 반영하지 못한 검색결과를 도출하고 있는 실정이다. 이에 본 연구에서는 선행 연구를 기반으로 태그 클러스터링을 통한 연관 태그 추출 및 북마크 정보와 다른 사용자의 유사도를 혼합한 웹 콘텐츠 랭킹 알고리즘을 제안하였다. 또한 제안 알고리즘의 효율성 분석을 위해 기존 검색 방법론 및 선행 연구의 방법론과의 비교평가를 시행하였으며, 그 결과 본 연구의 핵심적인 특징인 태그 정보 및 북마크 수와 유사도를 활용한 방법이 기존 방법론보다 효율적인 결과를 도출하였다.