• Title/Summary/Keyword: 소성 회전각

Search Result 52, Processing Time 0.021 seconds

FEA of Beam-Column Connection with Bolted Web (웨브를 볼트로 접합한 보-기둥 접합부의 유한요소해석)

  • Shin, Kyung-Jae;Lim, Bo-Hyuk;Lee, Swoo-Heon;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.305-316
    • /
    • 2011
  • As the building structures are higher and bigger, the high-performance steels of high strength, toughness, and low yield ratio had been required and developed. In this paper the behavior of the moment connection with bolted web and high strength steel was studied by using the finite-element analysis computer program of ABAQUS. The analysis model is based on the test results and the same cyclic load history was applied at the FE(Finite Element) model until it failed in the test. Through the FEA, several indicators hardly measured from the test were acquired. These indicators related to stress and strain were selected from three plastic rotation stages: 0.003 rad, 0.03 rad, and final failure rotation. Specifically, at the final failure stage, the strain indicators producing the full plastic behavior were suggested as a mechanical property for steel.

An Experimental Study of Cyclic Seismic Behavior of Steel Moment Connections Reinforced with Ribs (리브로 보강된 철골 모멘트 접합부의 내진거동에 관한 실험적 연구)

  • Lee, Cheol Ho;Lee, Jae Kwang;Jung, Jong Hyun;Oh, Myeong Ho;Koo, Eun Sook
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.499-508
    • /
    • 2002
  • A simple design method for rib-reinforced seismic steel moment connections has been recently proposed based on the equivalent strut model. An experimental program was implemented to verify the proposed design method, as well as develop the schemes that will prevent cracking at the rib tip where stress concentration was evident. All specimens designed using the proposed method were able to develop a satisfactory connection plastic rotation of 0.04 radian. In addition to rib reinforcement, slight beam flange trimming pushed the plastic hinging and local buckling of the beam away from the rip tip and effectively reduced cracking potential at the rib tip. Using strain gage readings, the strut action of the rib and resulting reverse shear in the beam web were also experimentally identified.

Understanding of Blast Resistant Design and Performance Evaluation of a Building designed for Conventional Loads (방폭설계의 이해 및 일반하중에 대해 설계된 건축물의 방폭성능 평가)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.83-90
    • /
    • 2018
  • Considering the increased threats from worldwide terrors and the increased demands on the blast resistant design of commercial buildings, this study is aimed at understanding the basic concept of blast resistant design and evaluating the blast performance with an actual design example. Although there are many differences between earthquake and blast loads, the design concept against both loads is similar in terms of allowing the plastic behavior of a structure and sharing the ductile detailing. Through the blast performance evaluation of a target building provided in this study, it is noted that a well-designed building for the conventional loads can have a certain level of blast resistance. However, this cannot be generalized since the blast load on a structure varies depending on the type of weapon, TNT equivalence, standoff distance, etc. Architectural planning with positioning the sacrificial structure or maintaining a sufficient standoff distance from the expected detonation is the simple and effective way of improving the blast resistance of a building.

Ultimate Strength Analysis of Stiffened Shell Structures Considering Effects of Residual Stresses (잔류응력을 고려한 보강된 쉘 구조의 극한강도 해석)

  • 김문영;최명수;장승필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.197-208
    • /
    • 2000
  • Choi et al./sup 1)/ presented the total Lagrangian formulation based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors and taking into account the second order rotation terms in the incremental displacement field. Assumed strain concept is adopted in order to overcome the shear locking phenomena and to eliminate the spurious zero energy mode. In this paper, for the ultimate strength analysis of stiffened shell structures considering effects of residual stresses, the return mapping algorithm based on the consistent elasto-plastic tangent modulus is applied to anisotropic shell structures. In addition, the load/displacement incremental scheme is adopted for non-linear F.E. analysis. Based on such methodology, the computer program is developed and numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with the results in literatures.

  • PDF

Evaluation of Moment Transfer Efficiency According to the Connection Length of the Column Flange and the Beam Web of the H-beam Column Connection (H형강 보-기둥 접합부의 보 웨브 단부접합길이에 따른 모멘트전달효율 평가)

  • Hong, Young-Ju;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.193-203
    • /
    • 2022
  • In this study, in order to compare the seismic performance of steel structure beam-column connection details and non-scallop connection details mainly used in Korea, a full-scale static cyclic loading test and FEM analysis were conducted through the same modeling as the experiment. For quantitative numerical comparison, the strain concentration ratio and moment transfer efficiency used in previous studies were cited. As the welding area of the beam web decreased, the deformation rate of the beam flange increased, and the plastic deformation capacity according to the rotation angle decreased or brittle fracture occurred. Comparing the analysis results with the experimental results, the possibility of brittle fracture tended to increase when the web welding ratio for the total cross-sectional area of H-shaped fell below 60%.

Pushover Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.325-334
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. A pushover analysis of the structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of the semi-rigid connection were adopted for the models. A fiber model was utilized for the moment-curvature relationship of the steel beam and the column, and a three-parameter power model was adopted for the moment-rotation angle of the semi-rigid connection. The top displacement, base-shear force, required ductility for the connection, sequence of the plastic hinge, and design factors such as the overstrength factor, ductility factor, and response modification coefficient were investigated using the pushover analysis of a 2D structure subjected to the equivalent static lateral force of KBC2005. The partial arrangement of the semi-rigid connection was found to have secured higher strength and lateral stiffness than that of the A-Semi frame, and greater ductility than the A-Rigid frame. The TSD connection was found suitable for use for economy and safety in the sample structure.

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Inelastic Time History Analysis of a Five-Story Steel Framed Structure Considering Rigidity of TSD Connection (TSD 접합부의 강성을 고려한 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.281-291
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effects of the beam-column connection on the structural behavior. The connections were designed as fully rigid and semi-rigid. The fiber model was used to describe the moment-curvature relationship of the steel beam and the column, the power model for the moment-rotation angle of the semi-rigid connection and the three-parameter model for the hysteretic behavior of the steel beam, column, and connection. The structure was idealized as separate 2-D frames and as connected 2-D frames. The peak ground accelerations of four earthquake records were modified in a time-history analysis for the levels of the mean return period and for the maximum base-shear force in a pushover analysis. The top story displacement, base-shear force, story drift, demanded ductility ratio for the semi-rigid connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were examined in the time-history analysis. The frame with the semi-rigid connection yielded a lower base-shear force, less magnitude, and increasing ratio in the bending moment of the column, beam, and connection than the frame with a fully rigid connection. The TSD connection was deemed to have secured the economy and safety of the sample structure that was subjected to seismic excitation for the Korean design level.

Rheological Properties of Gelatinized Potato Starch (겔라틴화(化)된 감자 전분(澱粉)의 리올로지 특성(特性))

  • Chang, Young Il;Chang, Kyu Seob;Park, Young Duck
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.1
    • /
    • pp.41-48
    • /
    • 1991
  • Rheological properties of gelatinized potato starch were investigated with Brookfield wide-gap viscometer at various conditions. The gelatinized potato starch at 3-7% showed a pseudoplastic behavior with yield stress, and presented thixotropic properties with time-dependent structural decays. The consistency index and yield stress of gelatinized starch were proportional to starch concentration but inversely proportional to measurement temperature, and the flow behavior index did not show constant relationship. The consistency index and yield stress of the gelatinized starch on addition of phosphate decreased as the flow behavior index increased. The values of activation energy at initial and equilibrium were 1.52 kcal/g.mole and 127 kcal/g.mole, respectively.

  • PDF

Capacity Design of Eccentrically Braced Frame Using Multiobjective Optimization Technique (다목적 최적화 기법을 이용한 편심가새골조의 역량설계)

  • Hong, Yun-Su;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.419-426
    • /
    • 2020
  • The structural design of the steel eccentrically braced frame (EBF) was developed and analyzed in this study through multiobjective optimization (MOO). For the optimal design, NSGA-II which is one of the genetic algorithms was utilized. The amount of structure and interfloor displacement were selected as the objective functions of the MOO. The constraints include strength ratio and rotation angle of the link, which are required by structural standards and have forms of the penalty function such that the values of the objective functions increase drastically when a condition is violated. The regulations in the code provision for the EBF system are based on the concept of capacity design, that is, only the link members are allowed to yield, whereas the remaining members are intended to withstand the member forces within their elastic ranges. However, although the pareto front obtained from MOO satisfies the regulations in the code provision, the actual nonlinear behavior shows that the plastic deformation is concentrated in the link member of a certain story, resulting in the formation of a soft story, which violates the capacity design concept in the design code. To address this problem, another constraint based on the Eurocode was added to ensure that the maximum values of the shear overstrength factors of all links did not exceed 1.25 times the minimum values. When this constraint was added, it was observed that the resulting pareto front complied with both the design regulations and capacity design concept. Ratios of the link length to beam span ranged from 10% to 14%, which was within the category of shear links. The overall design is dominated by the constraint on the link's overstrength factor ratio. Design characteristics required by the design code, such as interstory drift and member strength ratios, were conservatively compared to the allowable values.