• Title/Summary/Keyword: 소성 파손

Search Result 82, Processing Time 0.014 seconds

A Study on Road Traffic Volume Survey Using Vehicle Specification DB (자동차 제원 DB를 활용한 도로교통량 조사방안 연구)

  • Ji min Kim;Dong seob Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.93-104
    • /
    • 2023
  • Currently, the permanent road traffic volume surveys under Road Act are conducted using a intrusive Automatic Vehicle Classification (AVC) equipments to classify 12 categories of vehicles. However, intrusive AVC equipment inevitably have friction with vehicles, and physical damage to sensors due to cracks in roads, plastic deformation, and road construction decreases the operation rate. As a result, accuracy and reliability in actual operation are deteriorated, and maintenance costs are also increasing. With the recent development of ITS technology, research to replace the intrusive AVC equipment is being conducted. However multiple equipments or self-built DB operations were required to classify 12 categories of vehicles. Therefore, this study attempted to prepare a method for classifying 12 categories of vehicles using vehicle specification information of the Vehicle Management Information System(VMIS), which is collected and managed in accordance with Motor Vehicle Management Act. In the future, it is expected to be used to upgrade and diversify road traffic statistics using vehicle specifications such as the introduction of a road traffic survey system using Automatic Number Plate Recognition(ANPR) and classification of eco-friendly vehicles.

A Case Study on Predicting and Analyzing Inflow Sources of Underground Water in a Limestone Mine (석회석 광산 갱내수 유입원 예측분석 사례연구)

  • Minkyu Lee;Sunghyun Park;Hwicheol Ko;Yongsik Jeong;Seon-hee Heo
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.388-398
    • /
    • 2023
  • The changes in groundwater flow due to mining development act as a contributing factor to major issues such as ground subsidence, strength reduction and collapse. For the sustainable mining development, measures for dealing with fluctuations in seasonal underground water inflow, power losses, pump damage, and unexpected increases in inflow must be put in place. In this study, the aim is to identify the causes of underground seepage through the examination of hydrological connectivity between the study area and nearby limestone mine. A tracer tes for assessing subsurface connectivity has been planned. A variety of tracers, such as dyes and ions, were applied in lab test to select the optimal tracer material, and a hydrological model of the study area was implemented through field test. Finally, the hydrological connectivity between the external stream and underground water in the mine was analyzed.