• Title/Summary/Keyword: 소성힌지 길이

Search Result 30, Processing Time 0.02 seconds

Design of Steel Frames using Plastic Hinge Analysis (소성힌지해석을 이용한 강골조 시스템의 설계)

  • Chang, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.131-140
    • /
    • 2004
  • The main objective of the research is to develop an algorithm for the optimum design of two dimensional steel frames using refined plastic hinge analysis which considers material and geometrical nonlinearities. Using developed algorithm, an optimum design was perform without calculating an effective length factor of the column (K-factor). A multi-level discrete optimization technique with two parameters has been developed and employed in the optimum design algorithm. The optimization algorithm is applied to structural design with the objective of minimizing the weight of a structure and with constraints on load limit, frame drift, ductility. Various application example is provided to demonstrate the feasibility, validity and efficiency of the developed program.

Evaluation of Ultimate Stress of Unbonded Tendon in Prestressed Concrete Members (II) -Proposed Design Equation using Strain Compatibility (프리트레스트 콘크리트 부재에서 비 부착 긴장재의 극한응력 평가에 관한 연구(II))

  • 임재형;문정호;음성우;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.105-114
    • /
    • 1997
  • 본 연구는 비부착 긴장재를 갖는 부재에 대한 일련의 연구중 두 번째에 해당한다. 첫 번째 연구(1)에서는 기존연구의 제안식과 현행의 ACI 규준의 문제점을 고찰하고 기존의 총 167개 실험결과와 비교·분석하였다. 본 연구에서는 소성힌지 길이 개념과 변형도 적합조건에 의해서 비부착 긴장재의 응력을 평가할 수 있는 방법에 대한 검토를 통하여, 새로운 설계식을 제안하였다. 이는 이론적인 분석에 의한 변수설정과 기존 실험결과를 이용한 중회귀분석법을 사용하였다. 그리고 제안된 설계식을 기존의 식들과 비교하여 좋은 결과를 얻었으며, 제안된 설계식의 특성을 다음과 같이 설명하였다. (1)비부착 긴장재의 응력산정시 유효프리스트레스, 일반철근의 양, 작용하중의 형태 등은 중요한 변수로 작용할 수 있으므로 설계식에 고려하는 것이 바람직하다. (2)비부착 긴장재의 응력산정식은 현행 ACI 규준식과는 다르게 fc'/ p항의 제곱근과 비례하는 함수관계에 있다. (3)스팬-춤비가 비부착 긴장재의 응력에 미치는 영향은 소성힌지 길이의 개념에 의해서 역학적으로 타당하게 설명할 수 ldT다.

Crack Propagation Analysis Using the Concept of an Equivalent Plastic Hinged Length (등가소성힌지개념을 이용한 지하구조물 균열진전해석)

  • Park, Si-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.115-124
    • /
    • 2009
  • In this study, a numerical analysis technique was newly developed to evaluate the damage propagation characteristics of concrete structures. To do this, numerical techniques are incorporated for the concrete members up to the compressive damage due to the bending compressive forces after the tensile crack based on the deformation mechanism. Especially, for the compressive damage stage after the tensile crack, the crack propagation process will be analyzed numerically using the concept of an equivalent plastic hinged length. Using this concept, it can be established that section forces, such as axial forces and the moment cracks takes place, can be related to the width of the crack making it possible to analyze the crack extension.

A Development of Analysis Technique for Defects Which Were Incorporated a Propagation Process of Cracks in Tunnel Structures (터널구조물에 대한 균열변상의 진전해석이 가능한 유지관리 해석기법)

  • Park, Si-Hyun;Park, Sung-Kun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.310-313
    • /
    • 2010
  • 본 논문에서는 등가소성힌지길이 개념을 새롭게 개선하여 도입함하여 구조물의 거동특성을 평가하는 프로그램을 개발하였다. 시간의 경과 및 외부환경 변화와 더불어 발생 가능한 지하구조물의 변상은 해당 구조물의 구성재료 및 작용하는 외압의 형태 등에 의해 다르게 나타나게 된다. 즉, 장기적인 지반외력의 변화에 의해 콘크리트 구조체의 천단부에 큰 휨압축응력과 인장을력이 생기는데, 내측에는 압축이 생기고 외측에는 인장균열이 발생한다. 또한 측벽이나 어깨부에서는 인장응력과 전단응력에 의한 균열이 발생하기도 한다. 따라서 개발된 프로그램으로 균열발생단면에 대하여 축력, 휨모멘트, 균열폭을 서로 연관 지을 수 있게 될 뿐만 아니라 균열폭의 확장을 추적해 나갈 수 있다. 해석기법을 토대로 개발된 해석모듈을 이용하여, 본 해석 기법의 타당성에 대한 검증을 실시하였다. 검증을 위해서는 수평보구조와 터널구조에 대해 각각 해석을 수행하였다. 그 결과, 구조물 내에서의 균열의 진전이 점차적으로 확장되어 가는 것이 표현 가능한 것을 확인하였으며, 해석결과의 타당성을 확인하였다.

  • PDF

Evaluation on Seismic Performance of the Columns in Concrete Moment Frames (모멘트 골조 기둥의 구조 성능평가)

  • 한상환;박성일
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.513-520
    • /
    • 2002
  • This study is to evaluate the structural performance of columns in concrete moment frame. For this purpose the results of previous experimental studies were collected and compared. The experimental variables considered in this study are existance of lap splice within the possible plastic hinge region during an earthquake, ratio of longitudinal reinforcement axial load and the transverse reinforcement ratio. The strength, deformation, ductility capacity and the length of plastic hinge are compared in this study.

A Study on Strength Characteristics of Yieldable Steel Arch Supports (가축성 강재 지보의 강도특성에 관한 연구)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.261-274
    • /
    • 1998
  • The brief results of laboratory and field tests of yieldable steel arches are represented. The test supports were fabricated with three U-sectional beams which are 25.8 kg/m of Glocken profile. The structural analyses of semi-circular and arch supports were conducted to find out shape factor of U beam to be 1.35 and the location of 2nd plastic hinges. Load capacity of arch supports under crown loading were examined as a function of leg length. Yieldable characheristics of test supports were investigated with various bolting torque of connection part. Determination method of bolting torque were also studied. Finally, test supports were installed in-situ with torque of 21 kg .m, which showed a typical yielding procedure.

  • PDF

Proposal of a New Design Method of the Pile-Bent Structure Considering Plastic Hinge (단일 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.2
    • /
    • pp.91-101
    • /
    • 2011
  • In this study, a new design method of Pile-Bent structure considering plastic hinge was proposed on the basis of the beam-column model. To obtain the detailed informations, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Base on this study, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio ($D_c/D_p$) and normalized lateral cracking load ratio ($F/F_{Dc=Dp}$). Moreover, through comparisons with field cases to find out in-depth limit in which minimum concrete-steel ratio could be applied, in-depth limits ($L_{As=0.4%}$) normalized by the pile length ($L_p$) proportionally decrease as the pile length ($L_p/D_p$)increases up to $L_p/D_p=17.5$, and beyond that in-depth limit converges to a constant value (${\simeq}0.3$).

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.169-172
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions..

  • PDF

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web (얇은 두께의 웨브를 갖는 세장한 벽체의 변형능력 평가)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.185-186
    • /
    • 2009
  • In the present study, the deformation capacity of slender shear walls with thin web was studied. As reported by other researchers, web-crushing and rebar-fracture, developing by inelastic deformation after flexural yielding, were considered as the governing failure modes of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

  • PDF

Seismic Curvature Ductility of RC Bridge Piers with 2.5 Aspect Ratio (형상비 2.5의 RC 교각의 내진 곡률연성도)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • Due to the 1989 Loma Prieta, 1995 Hyogoken Nambu earthquakes, etc, a number of bridge columns  were collapsed in flexure-shear failures as a consequence of the premature termination of the column longitudinal reinforcement. Nevertheless, previous researches for the performance of bridge columns were concentrated on the flexural failure mode. It is well understood that the seismic behaviour of RC bridge piers was dependent on the performance of the plastic hinge of RC bridge piers, the ductility of which was desirable to be computed on the basis of the curvature. Experimental investigation was made to evaluate the variation of the curvature of the plastic hinge  region for the seismic performance of earthquake-damaged RC columns in flexure-shear failure mode. Seven test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading under a constant axial load, $P=0.1f_{ck}A_g$. Residual seismic capacity of damaged specimens was evaluated by analzying the moment-curvature hysteresis and the curvature ductility. Test results show that the biggest curvature was developed around 15cm above the footing, which induced the column failure. It was observed that RC bridge specimens with lap-spliced longitudinal steels appeared to fail at low curvature ductility but significant improvement was made in the curvature ductility of RC specimens with FRP straps wrapped around the plastic hinge region. Based on the experimental variation of the curvature of RC specimens, new equivalent length of the plastic hinge region was proposed by considering the lateral confinement in this study. The analytical and experimental relationship between the displacement and the curvature ductility were compared based on this proposal, which gave excellent result.