• 제목/요약/키워드: 소성역

검색결과 139건 처리시간 0.025초

원형공을 가진 보의 응력분포와 소성역 전파거동에 관한 연구 (A study on the stress distribution and plastic area propagation in the beams with a circular hole)

  • 김희철;왕지석;이경호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.225-239
    • /
    • 1985
  • The beams with a circular hole are often used for constructing structures. The center of the circular hole is normally located in neutral axis and the stress state around the hole due to bending moment is trivial. But the stress level around the hole due to shear force is expected to be significant especially in the case of beams made of shape steels. In this paper, the stress distributions around the circular hole of beams were presented. Using polar coordinates and generallized stress function, the formulas of stress components were derived. The aspects of plastic area propagations based on von Mises yield criteria were also shown graphically. In order to verify the formulas presented in this paper, a beam of I-shape steel with a circular hole was made and the strains around the hole were measured under various loading conditions. The experimental results were proved to coincide fairly well with the calculated values.

  • PDF

세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석 (Multi-stage Finite Element Inverse Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio)

  • 김승호;김세호;허훈
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.304-312
    • /
    • 2000
  • An inverse finite element approach is employed to efficiently design the optimum blank shape and intermediate shapes from the desired final shape in multi-stage elliptic cup drawing processes. The multi-stage deep-drawing process is difficult to design with the conventional finite element analysis since the process is very complicate with the conventional finite element analysis since the process is very complicated with intermediate shapes and the numerical analysis undergoes the convergence problem even with tremendous computing time. The elliptic cup drawing process needs much effort to design sine it requires full three-dimensional analysis. The inverse analysis is able to omit all complicated and tedious analysis procedures for the optimum process design. In this paper, the finite element inverse analysis provides the thickness strain distribution of each intermediate shape through the multi-stage analysis. The multi-stage analysis deals with the convergence among intermediate shapes and the corresponding sliding constraint surfaces that are described by the analytic function of merged-arc type surfaces.

  • PDF

변형이력을 고려한 세장비가 큰 직사각컵 성형공정의 다단계 유한요소 역해석 (Multi-stage Inverse Finite Element Analysis of Multi-stage Rectangular Cup Drawing Processes with Large Aspect Ratio Considering Deformation History)

  • 김승호;김세호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.94-97
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

임의 곡면의 금형형상이 고려된 미끄럼 구속면을 이용한 직사각컵의 다단계 유한요소 역해석 (Multi-stage Inverse Finite Element Analysis of Rectangular Cup Drawing considering Sliding Constraint Surfaces with Arbitrary Intermediate Die Shapes)

  • 김승호;김세호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.158-161
    • /
    • 2000
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

$\rho$-Version 유한요소법에 의한 균열판의 소성역 형상과 J-적분값 산정 (The Values of J-integral and Shapes of Plastic Zone Near a Crack Tip of Cracked Panels by the $\rho$-Version of F.E.M.)

  • 홍종현;우광성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.42-49
    • /
    • 1999
  • Because the linear elastic tincture analysis has been proved to be insufficient in predicting the failure of cracked bodies, in recent years, a number of fracture concepts have been studied which remain applicable in the presence of large-scale plasticity near a crack tip. This work thereby presents a new finite element model, as accurate as possible, to analyze plane problems of ductile fracture under large-scale yielding conditions. Based on the incremental theory of plasticity, the p-version finite element analysis is employed to account for the values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method and equivalent domain integral method. The numerical results by the proposed model are compared with the theoretical solutions in literatures and the numerical solutions by the i,-version of F.E.M.

  • PDF

균열 성장 지연현상에 대한 연구 (Study for Retardation Phenomenon)

  • 강용구;이태원;김동명
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.42-49
    • /
    • 2013
  • In this study, in order to analyze the crack retardation behaviors, effective plastic zone concept was proposed. By use of the proposed concept, crack retardation period, compressive residual stress and variation of effective plastic zone shapes were obtained. The results were compared with those of Willenborg model. Retardation period, compressive residual stress and effective plastic zone size obtained by using effective plastic zone concept were larger then the results obtained by using Willenborg analysis. Effective stress intensity factors obtained by using effective plastic zone concept were smaller then the results obtained by using Willenborg analysis.

유한요소법의 역추적기법을 활용한 정밀정형 노우징 부품의 성형 공정설계 (Process Design in Shell Nosing for Net-Shape Product by the Backward Tracing Schme of the Rigid-Plastic FEM)

  • 김상현;이진희;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.224-232
    • /
    • 1995
  • A process is designed by the backward tracing scheme of the rigid-plastic FEm for net-shape shell nosing component without machining after forming. The current process of the shell nosing industry requires cost-consuming machining to produce final product . The backward tracing scheme of the rigid-plastic FEM, a novel method in preform design of metal forming processes , derives a sound preform for net-shape shell nosing product . The current process is simulated to check the metal flow involved informing with a trial preform and its modified preform. It is found that the two preforms are not suitable for net-shape shell nosing product. Finally, a preform is desinged by the backward tracing scheme, which is suitable for net-shape manufacturing of the shell nosing component.

  • PDF

박판금속성형의 최적 블랭크 설계를 위한 삼차원 다단계 역해석 (Three Dimensional Multi-step Inverse Analysis for Optimum Blank Design in Sheet Metal Forming)

  • 이충호;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.179-182
    • /
    • 1997
  • One-step inverse methods based on deformation theory causes some amount of error. The amount of error is generally increased as the deformation path is more complex. As a remedy, a new three dimensional multi-step inverse method is introduced for optimum design of blank shapes and strain distributions from desired final shapes. The approach extends a one-step inverse method to a multi-step inverse method in order to reduce the amount of error. The algorithm developed is applied to square cup drawing to confirm its validity by demonstrating reasonably accurate numerical results.

  • PDF

두께가 다른 두 용접관계 성형에 있어서 블랭크 설계 및 용접선 이동에 대한 유한요소법의 역추적 기법적용 (Application of the Backward Tracing Scheme of Finite Element Method for the Tailored Blank Design and Welding Line Movement in Sheet Metal Forming with Two Different Thickness)

  • 최환호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.49-52
    • /
    • 1999
  • Tailored-welded blanks are used for forming of automobile structural and skin components. Its main objective is to achieve weight and production cost reduction in manufacturing of the components. For successful application of tailored-welded blanks design of initial welded blanks and prediction of welding line movement are critical. Here the utilization of the backward tracing scheme of the finite element method shows to be desirable in design of initial welded blanks for net-shape production and in prediction of the welding line movement. First the design of initial blank in forming of welded thick sheet with isotropy is tried and it appears successful in obtaining a net-shape stamping product. Based in the first approach the backward tracing scheme is applied to anisotropic tailored blank. The welding line movement is also discussed.

  • PDF

IF강의 페라이트역 압연시 전.후방 인장이 집합조직에 미치는 영향 (The Influences of Front and Back Tensions on The Development of Rolling Textures in IF Steel)

  • 신형준;이동녕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.349-355
    • /
    • 1999
  • The texture inhomogeniety during rolling is one of the greatest problems. Especially, shear texture develops more easily during ferritic rolling of steel sheets at high temperatures due to friction between rolls and the material. In this study, the influence of front and back tensions on the texture development during ferritic rolling has been studied. The rolling textures were simulated using the full constrains Taylor-Bishiop-Hill model with the strain history obtained from finite element analysis. The calculated textures showed that the back tension rolling could reduce the shear component more effectively than front tension or rolling without tension. However, the experimental results showed that the lension effect was very small compared to our prediction. It might be attributed to initial texture and difference in frictions between simulation and experiments.

  • PDF