• Title/Summary/Keyword: 소방펌프차

Search Result 11, Processing Time 0.022 seconds

On the Occurrence of Defects by Vehicle Type According to the Fire-fighting Vehicle Detailed Inspection (소방차량 정밀점검 분석에 따른 차종별 결함 발생에 관한 연구)

  • Lee, Jang Won;Han, Yong-Taek
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.112-119
    • /
    • 2021
  • Purpose: This study is based on the detailed inspection data for the last 6 years of fire-fighting high ladder vehicles, fire-fighting inflected ladder vehicles, fire-fighting chemical vehicles and fire-fighting pump vehicles used in front-line fire departments. The purpose is to contribute to the technological development of fire-fighting vehicles by grasping the implementation status of each city and province, the rate of defects, and the occurrence of defects by year. Method: The implementation status by city and province, defect incidence rate, and defect occurrences by year were analyzed. Result: From 2012 to 2017, when the average of 230 or more overhaul vehicles was requested, the results of each city/province show slight fluctuations, but the number of defects gradually decreased due to the old fire-fighting vehicle replacement project and the response of fire vehicle manufacturers. Conclusion: In the case of fire-fighting ladders, the incidence rate of defects was found to be in the order of elevator device, electric device, ladder device, and pneumatic supply device. And in the case of the fire fighting ladder, it was confirmed that the incidence of defects appeared in the order of the refractive ladder, hydraulic cylinder, hydraulic oil, and pneumatic supply device. In the case of fire-fighting chemical vehicles, it was confirmed that defects occurred in the powder fire extinguishing device, fire pump, vacuum pump, and pneumatic supply device.

An Empirical Study on the Relay Pumping Method for the High Pressure of Fire Engine Pump (소방펌프차의 고압방수를 위한 중계방수방식에 관한 실증적 연구)

  • Min, Se-Hong;Kwon, Yong-Joon;Park, Jong-Deok
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.52-59
    • /
    • 2013
  • In this study, tests were conducted to establish a fire engine of relay waterproof and utilization in order to maintain the pressure in a situation that require high-pressure water-resistant such as a high-rise building fire, etc. As a result of test on the change of a relay waterproof pressure, the measurement result with the hydrant intake of a fire engine opened has reduced approximately 20 % compared to the measurement result with the hydrant intake closed. Similar efficiency showed in the test result that change the pressure of 2 fire engines respectively to use them more efficiently at a fire fighting activity site. A fire engine operation and utilization is proposed based on this study result in order to cope effectively with a fire site requiring high-pressure stream in a high-rise building fire, etc. by using a fire engine held at present because there is no fire pump with high-pressure stream ability arranged at the fire station and there is no regulation on high-pressure fire-fighting pumps in a type approval and verification technology criterion for a fire engine.

A Study on Fire Suppression Measures Used in Wooden Temples (목조 사찰화재의 유형별 진압대책에 관한 연구)

  • Ko, Gi-Bong;Lee, Si-Young;Chae, Jin
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.10-17
    • /
    • 2012
  • This study classifies the fire suppression measures implemented by wooden temples into four types according to availability of the pump trucks (water tanks) at the fire sites. And this study outlines the strategies and methods based on each type of fire suppression measure. The results show that the fire suppression strategy applied in general buildings is also employed in temples where pump trucks (water tanks) and fire-fighting water are available. For temples where trucks and water are not available, the helicopter, water bag, fire suppression strategy focused on water supply link, automatic transmission system of a fire engine's level by using radio communication network, and water bladder are used. In addition, general four-wheel-drive vehicles equipped with fire fighting tools such as motor pump, hose, nozzle, and water bladder should be deployed in fire stations around the temples. A fire suppression strategy using A-type ladders is also required.

A Study on the Friction Loss Reduction in Fire Hoses Used at a Fire Scene (화재현장에서 사용하는 소방호스의 마찰손실 감소 방안에 관한 연구)

  • Min, Se-Hong;Kwon, Yong-Joon
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.52-59
    • /
    • 2013
  • It was described the measured friction loss depending on pressure used and changes in water flow rates for a fire hose used at a fire scene on this study. As a result of actual measurement based on the result obtained by analyzing the use situation of a fire hose such as the kind, quantity, pressure used, etc. of a fire hose, the friction loss in a fire hose under the condition of using by a fire officer at a fire scene was measured as up to 56.8 %. This is much different from the equivalent length of a fire hose used to calculate the pump head in an indoor and outdoor fire-fighting facility. There is no related restrictive regulation on friction loss, there are even no data on friction loss measured by fire hose makers, and spreading a fire hose without considering friction loss at a fire scene can result in an increased length of hose used and a high-pressure water discharge from a fire engine, so this study aims to establish a standard for an equivalent length to friction loss in a fire hose and to propose a spreading method considering friction loss in a fire hose at a fire scene.

Follow-Up Survey Fire Truck Deterioration (소방자동차 노후화에 따른 고장 발생원인 추적조사 연구)

  • Lee, Jang-Won;Kim, Eui-Tae;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.59-64
    • /
    • 2015
  • This study analyzed results of the causes of failure in 1,022 fire trucks currently being used in South Korea (aerial ladder, aerial platform, pumper, and chemical fire trucks). The results show that 46% of aerial ladder trucks have defective in the elevator brake systems, 29% of aerial platform trucks have contamination in the hydraulic oil, 37% of pumpers have defective in the pneumatic cylinders of the air supply system, and 39% of chemical fire trucks have defective in the powder fire extinguishing systems. The principal reasons for malfunctions are deterioration of the apparatuses, and accumulated fatigue from repetitive use of certain components, such as pneumatic cylinders in the air supply system and wire rope jamming in rollers in the ladder apparatus. These manufacturing defects should be improved upon in the manufacturing process. As a result, the fire trucks, which are used for 5 years or more, need precise inspections in accordance with the Regulation on Fire Apparatus Maintenance. Fire apparatuses have a service life of 10 to 12 years or more. They need to be replaced or require life extension, and they should be kept in top shape with the best maintenance for public safety.

A Study on the Field Application Test as the Forest Fire Suppression Equipment (산불 진화 장비별 현장 적용 실험 연구)

  • Kim, Jeong-Hun;Kim, Jang-Huan;Kim, Kyong-Ha;Lee, Byung-Doo;Shin, Jae-Youn
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.430-433
    • /
    • 2011
  • 산불 진화에 사용되는 지상 주력 장비를 대상으로 수원으로부터 호스 거리 및 고도에 따른 성능을 정량화하기 위한 현장 적용 실험을 실시하였다. 대조군으로는 담수지 형태의 수원을 사용하고 수원으로부터 고도차가 40m 수준인 예비실험을 대상으로 성능값을 비교하였다. 본 현장 적용 실험에서는 산림 내 계곡지를 수원으로 하였으며, 고도차가 150m 로 예비실험의 3.75배인 지형을 선택하였다. 고도에 따른 영향이 크지 않은 예비 실험과 비교하였을 때 고도가 높아질수록 동일 거리에서 측정한 성능값은 평균 50% 이상의 감소를 나타내었다. 그러나 수평 및 수직 거리는 20% 이내 수준의 감소를 나타내어 진화에 큰 장애 요소로는 작용하지 않았으며, 펌프압력은 소형펌프의 압력 상승이 가장 큰 상승률을 나타내었다. 이와 같은 결과는 수원의 형태에 따라 용수 공급차에 기인한 것으로 안정적 용수공급 저하, 펌핑압 부하 증가, 이물질 삽입 등이 원인인 것으로 사료되며, 고도에 따른 영향 인자도 반영된 것으로 해석된다. 또한 실험을 통해 진화장비별 실제 진화대원의 적정 사용거리와 거리별 적정 소요인원을 산출할 수 있었다.

  • PDF

A Study on the Performance Characteristic of a Fire Pump with Various Operating Conditions (운전조건 변화에 따른 소방펌프 성능특성 연구)

  • Park, Sung-Kyu;Noh, Go-Sub;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2011-2016
    • /
    • 2004
  • In order to develop a high efficiency fire pump, its performance characteristics with various operating conditions are investigated. The governing equations are derived from making using of three-dimensional Navier-Stokes equations with the standard ${\kappa}-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using a commercial code, CFX, pressure distribution and flow fields in a fire pump are calculated with various ranges of rotating speed 800-2400 rpm. Particularly, calculations with multiple frames of reference method between the rotating and stationary parts of the domain are carried out. With the help of numerical results, correlation formula between the casing pressure and the efficiency is derived.

  • PDF

Reliability Analysis on Firewater Supply Facilities based on the Probability Theory with Considering Common Cause Failures (소방수 공급설비에 대한 공통원인고장을 고려한 확률론적 신뢰도 분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.76-85
    • /
    • 2003
  • In this study, we write down the definitions, their causes and the techniques of analysis as a theoretical consideration of common cause failures, and investigate the limitation and the importance of the common cause failures by applying to the analysis on the fire protection as a representative safety facility. As you can know in the reliability analysis, most impressive cause is the malfunctions of pumping operations; especially the common cause failure of two pumps is dominant. In other words, it is possible to assess system-reliability as twice as actual without CCF From these, CCF is extraordinarily important and the results are highly dependent on the CCF factor. And although it would increase with multiple installations, the reliability are not defined as linear with those multiplications. In addition, the differences in results due to the models for analysis are not significant, whereas the various sources of data produce highly different results. Therefore, we conclude that the reliabilities are dependent on the quality of the usable data much better than the variety of models. As a result, the basic and engineering device for the preventions of CCF of the multiple facilities is to design it as reliably as to design the fire-water pump. That is to say, we must assess those reliabilities using PFD whether they are appropriate to SIL (Safety Integrity Level) which is required for the reliability in SIS (Safety Instrumented System). The result of the analysis on the reliability of the fire-water supply with CCF shows that PFD is 3.80E-3, so that it cannot be said to be designed as safely as in the level of SIL5. However, without CCF, PFD is 1.82E-3 which means that they are designed as unsafely as before.

An Experimental Study on a Discharge Pressure, Flow Rate and Foam Discharge Concentration through the Nozzle According to the Foam Suction Nipple Diameter (노즐 구경에 따른 포 수용액의 압력과 유량 및 농도 변화에 관한 실험적 연구)

  • Jang, Kyung-Nam;Lee, Maing-Ro;Park, Bong-Rae;Yun, Ki-Jo;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.84-91
    • /
    • 2015
  • The purpose of this study is to suggest the reasonable model of the caliber in suction nozzle, the pressure of suction nozzle, and the flow rate about foam system of line proportioner type using in the pumpcar. To test this, the experimental study was accomplished on the ground of the standards for the Performance Certification and Product Inspection of Foam Fire-extinguishing Chemical Mixing Machine. Aqueous Film Forming Foam in 3% and pipe type air foam nozzle with line proportioner FE 40 type were used. Test result showed that the pressure of suction nozzle within the limits between 0.25 MPa and 0.35 MPa was appropriate when the caliber in suction nozzle is 4 mm. Also, the pressure of suction nozzle within the limits between 0.45 MPa and 0.60 MPa was appropriate in the higher pressure than 4 mm when the caliber in suction nozzle is 5 mm.