• Title/Summary/Keyword: 소리의 공간제어

Search Result 11, Processing Time 0.024 seconds

Interactive Synthesizing of Sound in Virtual Environments with considering Shape and Elevation of the Terrain (가상환경에서 지형의 형태와 고도를 고려한 인터렉티브한 사운드 합성)

  • Park, Soyeon;Park, Seong-A;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.593-596
    • /
    • 2021
  • 본 논문에서는 지형의 고도와 기울기를 고려하여 사운드의 확산과 회절을 인터렉티브하게 표현할 수 있는 사운드 합성 기법을 제안한다. 우리의 접근 방식은 광선 추적법(Raytracing)을 기반으로 소리의 크기를 보여줄 수 있는 사운드 강도 맵을 빠르게 계산한다. 지형의 고도와 기울기 값을 고려하여 소리의 강도 맵에 가중치를 적용하여, 결과적으로 지형의 지오메트리 분석인 큰 계산 과정을 피하고 지형을 고려한 소리의 크기를 인터렉티브하게 업데이트한다. 이 과정에서 소리의 근원지에 따른 고도 간의 격차를 계산하여 소리의 크기를 자동으로 감쇠시키며, 주변 지형의 공간 기울기를 기반으로 기울기의 차에 따라 소리의 크기를 자동으로 감쇠시킨다. 본 논문에서 제안하는 방법을 이용한 소리는 실제 높낮이가 있는 현실의 지형에서 듣는 소리의 전파 및 감쇠와 유사한 형태를 보여주며, 소리의 위치에 따라서 소리 감소 패턴이 변경되고, 또한, 지형에 따라서 소리의 크기가 제어되는 결과를 보여준다.

  • PDF

Fundamentals of Bright and Dark Zone: Theoretical Backgrounds (음향 대조 및 밝기 제어: 이론적 배경)

  • Choi, Jung-Woo;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.388-393
    • /
    • 2012
  • Acoustic brightness and contrast control are promising techniques for manipulating acoustic energy over selected zones of interest using loudspeaker arrays. In this paper, the fundamental theory and concept of the brightness and contrast control is reviewed. The similarity and difference of two different strategies are explained in terms of the constraint required to determine a unique solution among many possible candidates. The application examples and recent progresses of the brightness and contrast control are presented.

  • PDF

The Spatial Equalizer$^{(R)}$

  • Kim, Yang-Han;Choe, Jeong-U
    • Broadcasting and Media Magazine
    • /
    • v.16 no.4
    • /
    • pp.31-45
    • /
    • 2011
  • 사용자가 원하는 3D 사운드 혹은 소리의 공간감을 원하는 대로 재현할 수 있는 오디오 시스템은 오랜 기간 동안 인류가 가지고 싶었던 꿈의 기계였다. 그러나 과연 개인 혹은 사용자가 원하는 3D 사운드라는 것이 무엇이며 어떻게 정의하여야 하는지는 명확하지 않다. 이것은 매우 주관적인 개념일 뿐만 아니라 개인에 따라 다를 수 있으며, 그 평가에 대한 객관적인 방법 또한 존재하지 않는다. 관련된 연구를 살펴보면, 원하는 소리의 파동 전파 자체를 시공간 상에서 물리적으로 재현하는 WFS(Wave Field Synthesis)나 Ambisonics, 또는 머리전달함수(HRTF: Head Related Transfer Function)를 기반으로 한 많은 연구들이 있다. 이렇게 재현된 음장(sound field)을 보면 이들이 인지되고 평가되는 등의 객관화를 위하여는 청취 환경에 따라 그 특성이 바뀌고 동일한 환경에서도 청취자에 따라 다르게 인지되는 근본적인 문제점을 가지고 있다. 음장 재현 방법의 이러한 근본적인 문제는 놀랍게도 과거의 스테레오 시스템에서 볼 수 있는 밸런스 노브(balance knob)로부터 그 해결의 실마리를 찾을 수 있다. 밸런스 노브는 보편적인 최적의 소리를 찾는 대신에 청취자가 원하는 음향 효과를 얻을 때까지 직접적으로 소리를 청취하고, 스스로 조절하여 평가할 수 있는 매개체의 역할을 수행한다. 만일 밸런스 노브와 같이 청취자가 원하는 3D 사운드를 스스로 평가하고 조절하기 위한 방법을 마련할 수 있다면? 즉, 청취자가 시공간적으로 원하는 3D 사운드를 실시간으로 청취하고 변화시킬 수 있는 인터페이스를 구현할 수 있다면? 과연 그러한 것이 어떻게 가능할 수 있는지 체계적인 검토가 이루어질 수 있다면 매우 좋을 것이다. 본 고는 이러한 것을 가능케 할 수 있는 즉, 청취자가 자유 자재로 원하는 음장을 형성할 수 있는 렌더링 기법 및 즉각적인 피드백이 가능한 인터페이스를 소개하고 있다. 인터페이스는 현재까지 오디오 시스템에서 주로 사용되는 주파수 이퀄라이져(frequency equalizer)와 매우 유사한 특징이 있다. 이러한 점을 감안하여 "Spatial Equalizer$^{(R)}$"라는 이름을 붙여 보았다. Spatial Equalizer$^{(R)}$는 공간 상에 하나의 점 또는 다수의 점으로 표시되는 가상 음원을 사용자가 조종하여 원 소리의 공간감을 제어할 수 있도록 구성되어 있다. 공간 상에 다수의 점 음원들의 위치를 변화시키거나 크기를 변화시킴으로써 청취자가 원하는 공간감을 구현할 수 있도록 하고 있다. 중요한 것은 종전의 이퀄라이져와 같이 Spatial Equalizer$^{(R)}$에 의해 형성되는 음장이 어떤 객관적인 척도에 의해서 평가되는 대신 사용자에 의해 직접 주관적으로 평가되고, 선택된다는 점이다.

Design of Multichannel Spherical Loudspeaker Array for the Spatial Sound Manipulation (소리의 공간 제어를 위한 구형 다채널 스피커 어레이 설계)

  • Kang, Dong-Soo;Choi, Jung-Woo;Lee, Jung-Min;Kim, Yang-Hann
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.214-224
    • /
    • 2012
  • The objective of this paper is to design multichannel spherical loudspeaker array by considering various positioning methods such as Gaussian grid, Lebedev grid and packing method. For the spatial sound manipulation, which is to make desired sound field by controling multiple sound sources, the Kirchhoff- Helmholtz integral states that sound fields can be reproduced in terms of infinite control sources on the integral surface. But since we cannot control infinite number of sources for the implementation, we have to allocate finite number of sound sources which can approximately act as infinite number of sources. To manipulate sound field inside of a sphere (which is typical example of three dimensional array) by controlling sound sources on the surface, three methods of allocating sound sources, which are Gaussian grid, Lebedev grid and packing method, are reviewed. For each geometry, the performances of manipulation rendered by time-reversal operator and higher-order ambisonics are compared.

Implementation of Spatial Sound Localization System and Subjective Test (3차원 음상정위 시스템의 구현과 주관 평가)

  • 이동우
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.43-46
    • /
    • 1998
  • 본 논문에서는 헤드폰과 스테레오 스피커를 통하여 가상의 음상을 임의의 위치에 정위시키는 음상정위 시스템을 구현하고, 주관 평가를 통하여 음상정위 성능을 고찰하였다. 음상정위 시스템은 크게 방향감을 제어하는 컨벌루션 처리부와 공간감과 거리감을 처리하는 잔향 처리부, 그리고 스테레오 스피커를 통해 소리를 재생할 때 발생하는 크로스 토크(corsstalk)를 제거하기 위한 트랜스오럴(transaural) 필터부로 나누어진다. 구현된 시스템의 음상정위 성능은 리스링 룸에서 녹음된 음성과 메트로놈 소리를 이용하여 수평각/고도각, 정지음/이동음, 거리감 등을 헤드폰과 스피커를 통하여 각각 실험한 결과 수평각 지각은 스피커 재생보다 헤드폰 재생이 우수했으며, 정지음보다 이동음의 지각 결과가, 고도각 지각은 전.후(0$^{\circ}$~360$^{\circ}$) 방향보다 좌.우(90$^{\circ}$~270$^{\circ}$) 방향의 결과가 우수하게 나왔다.

  • PDF

Incident sound fields reproduction system (입사음장재생시스템)

  • Chun Ingyu
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.373-374
    • /
    • 2004
  • 산란체가 있을 때에 음장은 입사파와 산란파로 구분될 수 있다. 입사파는 산란체에 영향을 받지 않는다. 바꿔 말하면 음원으로부터 나온 소리는 청취자와 주위 환경에 무관하다. 이 논문에 제시된 입사음장 재생시스템은 주어진 공간내에서 입사음장을 재생하여 청취자에 독립적인 가상음장을 만드는 시스템이다. 입사음장 재생은 경계표면제어원칙에 기반하였다.

  • PDF

Spatial Manipulation of Sound using Multiple Sources (다수의 음원을 사용한 공간의 소리 제어 방법론)

  • Choi, Joung-Woo;Kim, Yang-Hann;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.620-628
    • /
    • 2005
  • Spatial control of sound is essential to deliver better sound to the listener's position in space. As it can be experienced in many listening environments, the quality of sound can not be manifested over every position in a hall. This motivates us to control sound in a region we select. The primary focus of the developed method has to do with the brightness and contrast of acoustic image in space. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to make two different kinds of zone - the zone of quiet and the zone of loud sound - at the same time. The other perspective of this study is on the direction of sound. It is shown that we can control the direction of perceived sound source by focusing acoustic energy in wavenumber domain. To begin with, the proposed approaches are formulated for pure-tone case. Then the control methods are extended to a more general case, where the excitation signal has broadband spectrum. In order to control the broadband signal in time domain, an inverse filter design problem is defined and solved in frequency domain. Numerical and experimental results obtained in various conditions certainly validate that the acoustic brightness, acoustic contrast, direction of wave front can be manipulated for some finite region in space and time.

  • PDF

Can We Hear the Shape of a Noise Source\ulcorner (소음원의 모양을 들어서 상상할 수 있을까\ulcorner)

  • Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.586-603
    • /
    • 2004
  • One of the subtle problems that make noise control difficult for engineers is “the invisibility of noise or sound.” The visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical or numerical means to visualize the sound field have been attempted and as a result, a great deal of progress has been accomplished, for example in the field of visualization of turbulent noise. However, most of the numerical methods are not quite ready to be applied practically to noise control issues. In the meantime, fast progress has made it possible instrumentally by using multiple microphones and fast signal processing systems, although these systems are not perfect but are useful. The state of the art system is recently available but still has many problematic issues : for example, how we can implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently it is often difficult to determine the origin of the noise and the spatial shape of noise, as highlighted in the title. The first part of this paper introduces a brief history, which is associated with “sound visualization,” from Leonardo da Vinci's famous drawing on vortex street (Fig. 1) to modern acoustic holography and what has been accomplished by a line or surface array. The second part introduces the difficulties and the recent studies. These include de-Dopplerization and do-reverberation methods. The former is essential for visualizing a moving noise source, such as cars or trains. The latter relates to what produces noise in a room or closed space. Another mar issue associated this sound/noise visualization is whether or not Ivecan distinguish mutual dependence of noise in space : for example, we are asked to answer the question, “Can we see two birds singing or one bird with two beaks?"

The Conducting Motion Recognizing System Using Acceleration Sensors for the Virtual Orchestra (가속도 센서를 이용한 지휘 동작 인식 시스템)

  • Son, Dong-Kwan;Lee, Hui-Sung;Noh, Young-Hae;Wohn, Kwang-Yun;Goo, Bon-Cheol
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.124-129
    • /
    • 2006
  • 음악은 소리를 즐긴다는 뜻을 담고 있다. 감상자에게 단순한 청각적 자극을 넘어 즐거움을 주기 위해선 음악적인 경험이 뒷받침되어야 한다. 가상 현실을 이용한 사용자와 시스템 간의 상호작용을 음악 경험 제공에 접목하려는 시도는, 새로운 경험을 통해 일반인들이 보다 쉽게 음악을 접하고 체험함으로써 음악을 통해 즐거움을 얻을 수 있도록 도움을 주는 데에 그 목적이 있다. 가상 오케스트라를 구현하고 지휘 동작을 재현하는 것은 이러한 가능성을 극대화하는 연구이다. 본 논문에서는 가상 오케스트라를 구현하기 위해 필수적인 중간 단계로, 사용자의 지휘 동작을 감지하여 연주의 박자(속도)를 제어하는 지휘 시뮬레이션 시스템을 제시한다. 실제의 지휘 동작을 분석하고, 동작의 변화를 인식하기 위하여 가속도 센서를 이용, 공간상에서 지휘봉의 움직임을 가속도 정보로 수집하여 이에 상응하는 박자의 제어를 구현한다. 사용자의 박자 명시에 따라 변화하는 상하 방향의 가속도를 센서를 통해 전압 신호로 입력 받고, DSP 의 A/D conversion 모듈에서 디지털 신호로 변환, 일정 수준 이상의 신호를 박자 정보로 직렬통신을 통해 컴퓨터에 전달한다. 컴퓨터에서는 Max/MSP를 이용하여 각 박자 사이의 시간 간격을 측정하고 상응하는 MIDI 음악을 재생하는 방식으로 시스템이 구현된다. 기존 연구에서 사용된 CCD 카메라에 의한 Motion Tracking 을 보완하여 동작의 크기에 따라 음량을 조절한다. 본 논문에서 제시되는 시스템은 지휘 동작에서 가장 특징적으로 나타나는 상하 방향의 급격한 가속도 변화를 직접 입력 받기 때문에 기존 시스템에 비해 지휘 동작의 인식 성공률을 높일 수 있으며, 화상 처리 및 계산에 의한 지연을 최소화할 수 있다. 또한, 장치의 규모를 소형화하여 보다 지휘봉의 형태에 가까운 인터페이스를 제공하며, 적합한 응용 콘텐츠를 접목할 경우 게임 컨트롤러로의 발전 가능성이 있다.

  • PDF